Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017673895> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2017673895 endingPage "268" @default.
- W2017673895 startingPage "259" @default.
- W2017673895 abstract "Binary quantitative structure-activity relationship (QSAR) is an approach for the analysis of high throughput screening (HTS) data by correlating structural properties of compounds with a binary expression of biological activity (1 = active and 0 = inactive) and calculating a probability distribution for active and inactive compounds in a training set. Successfully deriving a predictive binary or any QSAR model largely depends on the selection of a preferred set of molecular descriptors that can capture the chemico-biological interaction for a particular biological target. In this study, a genetic algorithm (GA) was applied as a variable selection method in binary QSAR analysis. This GA-based variable selection method was applied to the analysis of three diverse sets of compounds, estrogen receptor (ER) ligands, carbonic anhydrase II inhibitors, and monoamine oxidase (MAO) inhibitors. Out of a variable pool of 150 molecular descriptors, predictive binary QSAR models were obtained for all three sets of compounds within a reasonable number of GA generations. The results indicate that the GA is a very effective variable selection approach for binary QSAR analysis." @default.
- W2017673895 created "2016-06-24" @default.
- W2017673895 creator A5013444907 @default.
- W2017673895 creator A5014990344 @default.
- W2017673895 creator A5021106800 @default.
- W2017673895 date "2002-01-01" @default.
- W2017673895 modified "2023-10-12" @default.
- W2017673895 title "Enhancement of binary QSAR analysis by a GA-based variable selection method" @default.
- W2017673895 cites W1967235632 @default.
- W2017673895 cites W1975046742 @default.
- W2017673895 cites W1980017694 @default.
- W2017673895 cites W2005685204 @default.
- W2017673895 cites W2019980219 @default.
- W2017673895 cites W2024842998 @default.
- W2017673895 cites W2032365414 @default.
- W2017673895 cites W2041602210 @default.
- W2017673895 cites W2046564413 @default.
- W2017673895 cites W2061111857 @default.
- W2017673895 cites W2062097402 @default.
- W2017673895 cites W2071158076 @default.
- W2017673895 cites W2080808615 @default.
- W2017673895 cites W2086936642 @default.
- W2017673895 cites W2088857433 @default.
- W2017673895 cites W2091823093 @default.
- W2017673895 cites W2125063954 @default.
- W2017673895 cites W226777143 @default.
- W2017673895 cites W2321929586 @default.
- W2017673895 cites W2950049799 @default.
- W2017673895 doi "https://doi.org/10.1016/s1093-3263(01)00122-x" @default.
- W2017673895 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11858634" @default.
- W2017673895 hasPublicationYear "2002" @default.
- W2017673895 type Work @default.
- W2017673895 sameAs 2017673895 @default.
- W2017673895 citedByCount "31" @default.
- W2017673895 countsByYear W20176738952012 @default.
- W2017673895 countsByYear W20176738952013 @default.
- W2017673895 countsByYear W20176738952017 @default.
- W2017673895 countsByYear W20176738952018 @default.
- W2017673895 countsByYear W20176738952019 @default.
- W2017673895 countsByYear W20176738952021 @default.
- W2017673895 crossrefType "journal-article" @default.
- W2017673895 hasAuthorship W2017673895A5013444907 @default.
- W2017673895 hasAuthorship W2017673895A5014990344 @default.
- W2017673895 hasAuthorship W2017673895A5021106800 @default.
- W2017673895 hasConcept C148483581 @default.
- W2017673895 hasConcept C154945302 @default.
- W2017673895 hasConcept C164126121 @default.
- W2017673895 hasConcept C164923092 @default.
- W2017673895 hasConcept C185592680 @default.
- W2017673895 hasConcept C186060115 @default.
- W2017673895 hasConcept C33923547 @default.
- W2017673895 hasConcept C41008148 @default.
- W2017673895 hasConcept C48372109 @default.
- W2017673895 hasConcept C71240020 @default.
- W2017673895 hasConcept C81917197 @default.
- W2017673895 hasConcept C86803240 @default.
- W2017673895 hasConcept C94375191 @default.
- W2017673895 hasConceptScore W2017673895C148483581 @default.
- W2017673895 hasConceptScore W2017673895C154945302 @default.
- W2017673895 hasConceptScore W2017673895C164126121 @default.
- W2017673895 hasConceptScore W2017673895C164923092 @default.
- W2017673895 hasConceptScore W2017673895C185592680 @default.
- W2017673895 hasConceptScore W2017673895C186060115 @default.
- W2017673895 hasConceptScore W2017673895C33923547 @default.
- W2017673895 hasConceptScore W2017673895C41008148 @default.
- W2017673895 hasConceptScore W2017673895C48372109 @default.
- W2017673895 hasConceptScore W2017673895C71240020 @default.
- W2017673895 hasConceptScore W2017673895C81917197 @default.
- W2017673895 hasConceptScore W2017673895C86803240 @default.
- W2017673895 hasConceptScore W2017673895C94375191 @default.
- W2017673895 hasIssue "4" @default.
- W2017673895 hasLocation W20176738951 @default.
- W2017673895 hasLocation W20176738952 @default.
- W2017673895 hasOpenAccess W2017673895 @default.
- W2017673895 hasPrimaryLocation W20176738951 @default.
- W2017673895 hasRelatedWork W1969417150 @default.
- W2017673895 hasRelatedWork W2014516257 @default.
- W2017673895 hasRelatedWork W2030827714 @default.
- W2017673895 hasRelatedWork W2066803237 @default.
- W2017673895 hasRelatedWork W2133626814 @default.
- W2017673895 hasRelatedWork W2285851822 @default.
- W2017673895 hasRelatedWork W2386804642 @default.
- W2017673895 hasRelatedWork W2953312219 @default.
- W2017673895 hasRelatedWork W3083924858 @default.
- W2017673895 hasRelatedWork W3190247062 @default.
- W2017673895 hasVolume "20" @default.
- W2017673895 isParatext "false" @default.
- W2017673895 isRetracted "false" @default.
- W2017673895 magId "2017673895" @default.
- W2017673895 workType "article" @default.