Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017674154> ?p ?o ?g. }
- W2017674154 endingPage "349" @default.
- W2017674154 startingPage "338" @default.
- W2017674154 abstract "The production of coalbed methane (CBM) represents a vital new source of natural gas supply in Western Canada. There are, however, concerns over potential negative environmental impacts on groundwater resources caused by potential contamination with fluids and gases from coal-bearing strata. This paper provides a brief description of the geochemistry and a detailed discussion of trace element and rare earth element (REE) concentrations of the produced fluids from two major coal deposits in Western Canada, the Mannville Formation and the Horseshoe Canyon/Belly River Group (HSCN/BRG), and shallow groundwater (SGW) in this region. It evaluates how the depositional environment, redox conditions, and water–rock interactions influence the trace element and rare earth element distributions in the produced fluids and SGW of the study area. Produced waters from the Mannville Formation are a saline Na–Cl type and a high boron content is indicative of a brackish/marine depositional environment. In contrast, the HSCN/BRG produced fluids are a Na–HCO3 water type and have lower total dissolved solids (TDS) and lower boron concentrations. Shallow groundwater has a Na–HCO3 to Na–HCO3–SO4 water type with often high concentrations of sulphate and low TDS. Some groundwater samples, many HSCN/BRG and all Mannville fluids had low sulphate concentrations often with elevated δ34S values indicating that bacterial sulphate reduction had occurred making the redox environment suitable for methanogenesis. Dissolved gas from the Mannville Formation had a notable thermogenic component, whereas dissolved gas from the HSCN/BRG and free gas in shallow groundwater contained methane predominantly or exclusively of biogenic origin. Mannville produced waters are up to 70 times more concentrated in trace elements compared to the HSCN/BRG waters and up to 300 times more concentrated than shallow groundwater. In the Mannville fluids, trace elements, such as As, Se and Pb occurred in concentrations often exceeding drinking water guidelines (5 μg/L, 10 μg/L and 10 μg/L, respectively), whereas most samples in the HSCN/BRG contained only Se above drinking water guidelines, and a few samples contained As and Pb slightly above the maximum allowable concentrations for drinking water. Therefore, the potential risk of trace metal contamination of shallow groundwater with HSCN/BRG swabbing fluids is low because of their comparatively low trace metal content. Rare earth elements in the Mannville produced fluids indicate interaction with silicate dominated host rocks. In contrast, the REEs of the HSCN/BRG produced fluids show interaction with carbonate-rich material. The shallow groundwater shows a similar pattern to the HSCN/BRG, suggesting that REEs are not a suitable parameter to monitor potential contamination of shallow groundwater with CBM fluids from the HSCN/BRG. However, several other geochemical and isotopic parameters are sufficiently distinct between shallow groundwater, HSCN/BRG, and Mannville fluids so that cross-contamination with produced fluids or gases should be identifiable with a suitable geochemical monitoring program." @default.
- W2017674154 created "2016-06-24" @default.
- W2017674154 creator A5014315717 @default.
- W2017674154 creator A5018312750 @default.
- W2017674154 creator A5054476592 @default.
- W2017674154 creator A5056848342 @default.
- W2017674154 creator A5080716240 @default.
- W2017674154 date "2009-01-01" @default.
- W2017674154 modified "2023-10-14" @default.
- W2017674154 title "Produced fluids and shallow groundwater in coalbed methane (CBM) producing regions of Alberta, Canada: Trace element and rare earth element geochemistry" @default.
- W2017674154 cites W1967980801 @default.
- W2017674154 cites W1975278947 @default.
- W2017674154 cites W1978626195 @default.
- W2017674154 cites W1986829858 @default.
- W2017674154 cites W1989937859 @default.
- W2017674154 cites W1991837951 @default.
- W2017674154 cites W1992814194 @default.
- W2017674154 cites W2000668024 @default.
- W2017674154 cites W2003954819 @default.
- W2017674154 cites W2004762930 @default.
- W2017674154 cites W2005029355 @default.
- W2017674154 cites W2008680648 @default.
- W2017674154 cites W2009073384 @default.
- W2017674154 cites W2018006515 @default.
- W2017674154 cites W2020061003 @default.
- W2017674154 cites W2020845246 @default.
- W2017674154 cites W2021481398 @default.
- W2017674154 cites W2023679677 @default.
- W2017674154 cites W2035607178 @default.
- W2017674154 cites W2035778176 @default.
- W2017674154 cites W2037551301 @default.
- W2017674154 cites W2041336258 @default.
- W2017674154 cites W2042739479 @default.
- W2017674154 cites W2044140503 @default.
- W2017674154 cites W2045047668 @default.
- W2017674154 cites W2046398164 @default.
- W2017674154 cites W2048305276 @default.
- W2017674154 cites W2052171612 @default.
- W2017674154 cites W2052963925 @default.
- W2017674154 cites W2060617303 @default.
- W2017674154 cites W2062061038 @default.
- W2017674154 cites W2071044108 @default.
- W2017674154 cites W2078791042 @default.
- W2017674154 cites W2079096748 @default.
- W2017674154 cites W2081628129 @default.
- W2017674154 cites W2083266324 @default.
- W2017674154 cites W2094588720 @default.
- W2017674154 cites W2107961026 @default.
- W2017674154 cites W2109428383 @default.
- W2017674154 cites W2112440348 @default.
- W2017674154 cites W2125838564 @default.
- W2017674154 cites W2163141221 @default.
- W2017674154 cites W2163605228 @default.
- W2017674154 cites W2183147524 @default.
- W2017674154 cites W4246200978 @default.
- W2017674154 doi "https://doi.org/10.1016/j.coal.2008.07.012" @default.
- W2017674154 hasPublicationYear "2009" @default.
- W2017674154 type Work @default.
- W2017674154 sameAs 2017674154 @default.
- W2017674154 citedByCount "51" @default.
- W2017674154 countsByYear W20176741542012 @default.
- W2017674154 countsByYear W20176741542013 @default.
- W2017674154 countsByYear W20176741542014 @default.
- W2017674154 countsByYear W20176741542015 @default.
- W2017674154 countsByYear W20176741542016 @default.
- W2017674154 countsByYear W20176741542017 @default.
- W2017674154 countsByYear W20176741542018 @default.
- W2017674154 countsByYear W20176741542019 @default.
- W2017674154 countsByYear W20176741542020 @default.
- W2017674154 countsByYear W20176741542021 @default.
- W2017674154 countsByYear W20176741542022 @default.
- W2017674154 countsByYear W20176741542023 @default.
- W2017674154 crossrefType "journal-article" @default.
- W2017674154 hasAuthorship W2017674154A5014315717 @default.
- W2017674154 hasAuthorship W2017674154A5018312750 @default.
- W2017674154 hasAuthorship W2017674154A5054476592 @default.
- W2017674154 hasAuthorship W2017674154A5056848342 @default.
- W2017674154 hasAuthorship W2017674154A5080716240 @default.
- W2017674154 hasConcept C107872376 @default.
- W2017674154 hasConcept C108615695 @default.
- W2017674154 hasConcept C109007969 @default.
- W2017674154 hasConcept C111368507 @default.
- W2017674154 hasConcept C114793014 @default.
- W2017674154 hasConcept C118178180 @default.
- W2017674154 hasConcept C126753816 @default.
- W2017674154 hasConcept C127313418 @default.
- W2017674154 hasConcept C129513315 @default.
- W2017674154 hasConcept C156622251 @default.
- W2017674154 hasConcept C165205528 @default.
- W2017674154 hasConcept C17409809 @default.
- W2017674154 hasConcept C178790620 @default.
- W2017674154 hasConcept C185592680 @default.
- W2017674154 hasConcept C187320778 @default.
- W2017674154 hasConcept C199289684 @default.
- W2017674154 hasConcept C2776152364 @default.
- W2017674154 hasConcept C2776469828 @default.
- W2017674154 hasConcept C2777615417 @default.
- W2017674154 hasConcept C2780416900 @default.