Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017676864> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2017676864 abstract "In recent years, the proliferation of VOIP data has created a number of applications in which it is desirable to perform quick online classification and recognition of massive voice streams. Typically such applications are encountered in real time intelligence and surveillance. In many cases, the data streams can be in compressed format, and the rate of data processing can often run at the rate of Gigabits per second. All known techniques for speaker voice analysis require the use of an offline training phase in which the system is trained with known segments of speech. The state-of-the-art method for text-independent speaker recognition is known as Gaussian Mixture Modeling (GMM), and it requires an iterative Expectation Maximization Procedure for training, which cannot be implemented in real time. In this paper, we discuss the details of such an online voice recognition system. For this purpose, we use our micro-clustering algorithms to design concise signatures of the target speakers. One of the surprising and insightful observations from our experiences with such a system is that while it was originally designed only for efficiency, we later discovered that it was also more accurate than the widely used Gaussian Mixture Model (GMM). This was because of the conciseness of the micro-cluster model, which made it less prone to over training. This is evidence of the fact that it is often possible to get the best of both worlds and do better than complex models both from an efficiency and accuracy perspective." @default.
- W2017676864 created "2016-06-24" @default.
- W2017676864 creator A5028089542 @default.
- W2017676864 date "2007-08-12" @default.
- W2017676864 modified "2023-10-16" @default.
- W2017676864 title "A framework for classification and segmentation of massive audio data streams" @default.
- W2017676864 cites W2041823554 @default.
- W2017676864 cites W2095897464 @default.
- W2017676864 doi "https://doi.org/10.1145/1281192.1281302" @default.
- W2017676864 hasPublicationYear "2007" @default.
- W2017676864 type Work @default.
- W2017676864 sameAs 2017676864 @default.
- W2017676864 citedByCount "4" @default.
- W2017676864 countsByYear W20176768642015 @default.
- W2017676864 countsByYear W20176768642018 @default.
- W2017676864 crossrefType "proceedings-article" @default.
- W2017676864 hasAuthorship W2017676864A5028089542 @default.
- W2017676864 hasBestOaLocation W20176768642 @default.
- W2017676864 hasConcept C119857082 @default.
- W2017676864 hasConcept C124101348 @default.
- W2017676864 hasConcept C12713177 @default.
- W2017676864 hasConcept C133892786 @default.
- W2017676864 hasConcept C153180895 @default.
- W2017676864 hasConcept C154945302 @default.
- W2017676864 hasConcept C28490314 @default.
- W2017676864 hasConcept C41008148 @default.
- W2017676864 hasConcept C61224824 @default.
- W2017676864 hasConcept C73555534 @default.
- W2017676864 hasConcept C89600930 @default.
- W2017676864 hasConceptScore W2017676864C119857082 @default.
- W2017676864 hasConceptScore W2017676864C124101348 @default.
- W2017676864 hasConceptScore W2017676864C12713177 @default.
- W2017676864 hasConceptScore W2017676864C133892786 @default.
- W2017676864 hasConceptScore W2017676864C153180895 @default.
- W2017676864 hasConceptScore W2017676864C154945302 @default.
- W2017676864 hasConceptScore W2017676864C28490314 @default.
- W2017676864 hasConceptScore W2017676864C41008148 @default.
- W2017676864 hasConceptScore W2017676864C61224824 @default.
- W2017676864 hasConceptScore W2017676864C73555534 @default.
- W2017676864 hasConceptScore W2017676864C89600930 @default.
- W2017676864 hasLocation W20176768641 @default.
- W2017676864 hasLocation W20176768642 @default.
- W2017676864 hasOpenAccess W2017676864 @default.
- W2017676864 hasPrimaryLocation W20176768641 @default.
- W2017676864 hasRelatedWork W1197719229 @default.
- W2017676864 hasRelatedWork W1516392727 @default.
- W2017676864 hasRelatedWork W1992796048 @default.
- W2017676864 hasRelatedWork W2129090883 @default.
- W2017676864 hasRelatedWork W2381158726 @default.
- W2017676864 hasRelatedWork W2510758617 @default.
- W2017676864 hasRelatedWork W2787722845 @default.
- W2017676864 hasRelatedWork W2897195263 @default.
- W2017676864 hasRelatedWork W4206076898 @default.
- W2017676864 hasRelatedWork W4287816519 @default.
- W2017676864 isParatext "false" @default.
- W2017676864 isRetracted "false" @default.
- W2017676864 magId "2017676864" @default.
- W2017676864 workType "article" @default.