Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017683990> ?p ?o ?g. }
- W2017683990 endingPage "185" @default.
- W2017683990 startingPage "167" @default.
- W2017683990 abstract "Colonization of new habitats, which have been established as a result of a catastrophic disturbance of the environment, is one of the characteristic repetitive events throughout the Phanerozoic. In recent years, much attention has been paid to investigations focusing on biological recovery of benthic habitats severely disturbed by human activity. In order to improve our environmental and stratigraphical interpretations of such events, we need a more thorough understanding of the processes involved in colonization by one of the most abundant and useful fossil groups, the benthic foraminifera. The present review focuses on processes governing benthic foraminiferal dispersion and colonization patterns in modern environments. For benthic foraminifera, the only active dispersal mechanism is through self-locomotion on or within the sediment and this is considered to be efficient over short distances only. Several passive dispersal methods have been suggested but two seem to be of more general importance. These are dispersal through release and transport of embryonic juveniles and passive suspension and transport of various growth stages. Both are probably important for most benthic foraminifera but the former is likely to be the main mechanism for attached, tubular and larger foraminifera, which are not easily entrained at a later life stage. The latter seems to be a more important dispersion mechanism for benthic foraminifera than previously realized. The colonization rate of soft-bottom substrates is closely related to the hydraulic regime in, and the transit time from, the source area inhabited by species capable of colonizing the new habitat (as long as food and other environmental characteristics are not limiting factors). The transit time depends on the speed of the transporting medium and the distance from the source area. There seems to be two end-processes which can operate during the colonization, depending on whether physically induced or biological processes are allowed to dominate. They are characterized by different colonization patterns. In high energy environments (bottom current velocities often >20 cm/s), a short transit time may cause the major components of the nearest ambient seafloor assemblages to colonize the new habitat within days. In this case the colonization is simply through a physical transfer of parts of the source community to the new habitat, allowing no time for pioneer, opportunistic assemblages to develop. In low energy environments (bottom current velocities generally <10 cm/s), the transit time is long for most species. Here, colonization follows the classic metazoan successional pattern with an initial, high abundance pioneer assemblage strongly dominated by small opportunists followed by development of assemblages with increasing numbers of specialized species and recovery can take from one to several years. Initial lack of food (e.g., volcanic ash) or `hostile' substrate properties (e.g., recently reoxygenated or severely contaminated sediments) may delay colonization by months or even years. Small, infaunal species (both calcareous and agglutinated) are among the first and most successful colonizers of soft bottom habitats from shallow waters to the deep sea. Throchospiral agglutinated taxa are among the most abundant colonizers on deep sea hard substrates." @default.
- W2017683990 created "2016-06-24" @default.
- W2017683990 creator A5064795327 @default.
- W2017683990 date "1999-05-01" @default.
- W2017683990 modified "2023-10-01" @default.
- W2017683990 title "Colonization of new habitats by benthic foraminifera: a review" @default.
- W2017683990 cites W1963522589 @default.
- W2017683990 cites W1963876347 @default.
- W2017683990 cites W1964836444 @default.
- W2017683990 cites W1965173604 @default.
- W2017683990 cites W1966427670 @default.
- W2017683990 cites W1967813598 @default.
- W2017683990 cites W1968868093 @default.
- W2017683990 cites W1972069385 @default.
- W2017683990 cites W1972298334 @default.
- W2017683990 cites W1973482832 @default.
- W2017683990 cites W1978507158 @default.
- W2017683990 cites W1978616972 @default.
- W2017683990 cites W1980055870 @default.
- W2017683990 cites W1982094918 @default.
- W2017683990 cites W1985544225 @default.
- W2017683990 cites W1988769761 @default.
- W2017683990 cites W1992481955 @default.
- W2017683990 cites W1994186257 @default.
- W2017683990 cites W1996122943 @default.
- W2017683990 cites W2004385394 @default.
- W2017683990 cites W2004677658 @default.
- W2017683990 cites W2009291304 @default.
- W2017683990 cites W2011175011 @default.
- W2017683990 cites W2013204281 @default.
- W2017683990 cites W2013770061 @default.
- W2017683990 cites W2016225258 @default.
- W2017683990 cites W2016299853 @default.
- W2017683990 cites W2017990256 @default.
- W2017683990 cites W2021847770 @default.
- W2017683990 cites W2025313446 @default.
- W2017683990 cites W2027728544 @default.
- W2017683990 cites W2030293212 @default.
- W2017683990 cites W2031516519 @default.
- W2017683990 cites W2034618462 @default.
- W2017683990 cites W2034628614 @default.
- W2017683990 cites W2035120714 @default.
- W2017683990 cites W2035833920 @default.
- W2017683990 cites W2036856261 @default.
- W2017683990 cites W2038371064 @default.
- W2017683990 cites W2038858452 @default.
- W2017683990 cites W2040865354 @default.
- W2017683990 cites W2040922451 @default.
- W2017683990 cites W2049153274 @default.
- W2017683990 cites W2050373812 @default.
- W2017683990 cites W2053589129 @default.
- W2017683990 cites W2066511761 @default.
- W2017683990 cites W2067486528 @default.
- W2017683990 cites W2068779073 @default.
- W2017683990 cites W2069667345 @default.
- W2017683990 cites W2072602454 @default.
- W2017683990 cites W2072661628 @default.
- W2017683990 cites W2076328055 @default.
- W2017683990 cites W2077969420 @default.
- W2017683990 cites W2081629155 @default.
- W2017683990 cites W2083488735 @default.
- W2017683990 cites W2086277541 @default.
- W2017683990 cites W2087562323 @default.
- W2017683990 cites W2096886954 @default.
- W2017683990 cites W2098390283 @default.
- W2017683990 cites W2105192601 @default.
- W2017683990 cites W2109919990 @default.
- W2017683990 cites W2111738432 @default.
- W2017683990 cites W2114814282 @default.
- W2017683990 cites W2120779009 @default.
- W2017683990 cites W2128099280 @default.
- W2017683990 cites W2135262245 @default.
- W2017683990 cites W2152001425 @default.
- W2017683990 cites W2163820643 @default.
- W2017683990 cites W2164377798 @default.
- W2017683990 cites W2167146957 @default.
- W2017683990 cites W2168642919 @default.
- W2017683990 cites W2313009475 @default.
- W2017683990 cites W2313359626 @default.
- W2017683990 cites W2333030944 @default.
- W2017683990 cites W2333503337 @default.
- W2017683990 cites W2335209136 @default.
- W2017683990 cites W2908540943 @default.
- W2017683990 cites W2910951899 @default.
- W2017683990 cites W612211758 @default.
- W2017683990 cites W2106995889 @default.
- W2017683990 doi "https://doi.org/10.1016/s0012-8252(99)00016-1" @default.
- W2017683990 hasPublicationYear "1999" @default.
- W2017683990 type Work @default.
- W2017683990 sameAs 2017683990 @default.
- W2017683990 citedByCount "184" @default.
- W2017683990 countsByYear W20176839902012 @default.
- W2017683990 countsByYear W20176839902013 @default.
- W2017683990 countsByYear W20176839902014 @default.
- W2017683990 countsByYear W20176839902015 @default.
- W2017683990 countsByYear W20176839902016 @default.
- W2017683990 countsByYear W20176839902017 @default.
- W2017683990 countsByYear W20176839902018 @default.