Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017691666> ?p ?o ?g. }
- W2017691666 endingPage "81" @default.
- W2017691666 startingPage "70" @default.
- W2017691666 abstract "Today highly complex 3D cell culture formats that closely mimic the in vivo situation are increasingly available. Despite their wide use, the development of analytical methods and tools that can work within the depth of 3D-tissue constructs lags behind. In order to get the most information from a 3D cell sample, adequate and reliable assays are required. However, the majority of tools and methods used today have been originally designed for 2D cell cultures and translation to a 3D environment is in general not trivial. Ideally, an analytical method should be non-invasive and allow for repeated observation of living cells in order to detect dynamic changes in individual cells within the 3D cell culture. Although well-established laser confocal microscopy can be used for these purposes, this technique has serious limitations including penetration depth and availability. Focusing on two relevant analytical methods for live-cell monitoring, we discuss the current challenges of analyzing living 3D samples: microscopy, which is the most widely used technology to observe and examine cell cultures, has been successfully adapted for 3D samples by recording of so-called “z-stacks”. However the required equipment is generally very expensive and therefore access is often limited. Consequently alternative and less advanced approaches are often applied that cannot capture the full structural complexity of a 3D sample. Similarly, image analysis tools for quantification of microscopic images range from highly specialized and costly to simplified and inexpensive. Depending on the actual sample composition and scientific question the best approach needs to be assessed individually. Another more recently introduced technology for non-invasive cell analysis is Raman micro-spectroscopy. It enables label-free identification of cellular metabolic changes with high sensitivity and has already been successful applied to 2D and 3D cell cultures. However, its future significance for cell analysis will strongly depend on the availability of application oriented and user-friendly systems including specific tools for easy analysis and interpretation of spectral data focusing on biological relevant information." @default.
- W2017691666 created "2016-06-24" @default.
- W2017691666 creator A5002099649 @default.
- W2017691666 creator A5003109197 @default.
- W2017691666 creator A5010152086 @default.
- W2017691666 creator A5033465301 @default.
- W2017691666 creator A5038709136 @default.
- W2017691666 creator A5051722037 @default.
- W2017691666 creator A5060660907 @default.
- W2017691666 creator A5061027783 @default.
- W2017691666 creator A5071959205 @default.
- W2017691666 date "2015-07-01" @default.
- W2017691666 modified "2023-10-16" @default.
- W2017691666 title "Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures" @default.
- W2017691666 cites W1535813017 @default.
- W2017691666 cites W1546663977 @default.
- W2017691666 cites W1892524026 @default.
- W2017691666 cites W1944363068 @default.
- W2017691666 cites W1968172783 @default.
- W2017691666 cites W1972328870 @default.
- W2017691666 cites W1983141048 @default.
- W2017691666 cites W2008444129 @default.
- W2017691666 cites W2008962365 @default.
- W2017691666 cites W2010265091 @default.
- W2017691666 cites W2014507031 @default.
- W2017691666 cites W2015666487 @default.
- W2017691666 cites W2030782702 @default.
- W2017691666 cites W2037586865 @default.
- W2017691666 cites W2040853146 @default.
- W2017691666 cites W2042704577 @default.
- W2017691666 cites W2044166463 @default.
- W2017691666 cites W2045387133 @default.
- W2017691666 cites W2055234715 @default.
- W2017691666 cites W2081221904 @default.
- W2017691666 cites W2085531521 @default.
- W2017691666 cites W2096200085 @default.
- W2017691666 cites W2114796829 @default.
- W2017691666 cites W2139442812 @default.
- W2017691666 cites W2140969869 @default.
- W2017691666 cites W2160132765 @default.
- W2017691666 cites W4238768614 @default.
- W2017691666 doi "https://doi.org/10.1016/j.jbiotec.2015.02.007" @default.
- W2017691666 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25687101" @default.
- W2017691666 hasPublicationYear "2015" @default.
- W2017691666 type Work @default.
- W2017691666 sameAs 2017691666 @default.
- W2017691666 citedByCount "40" @default.
- W2017691666 countsByYear W20176916662015 @default.
- W2017691666 countsByYear W20176916662016 @default.
- W2017691666 countsByYear W20176916662017 @default.
- W2017691666 countsByYear W20176916662018 @default.
- W2017691666 countsByYear W20176916662019 @default.
- W2017691666 countsByYear W20176916662020 @default.
- W2017691666 countsByYear W20176916662021 @default.
- W2017691666 countsByYear W20176916662022 @default.
- W2017691666 countsByYear W20176916662023 @default.
- W2017691666 crossrefType "journal-article" @default.
- W2017691666 hasAuthorship W2017691666A5002099649 @default.
- W2017691666 hasAuthorship W2017691666A5003109197 @default.
- W2017691666 hasAuthorship W2017691666A5010152086 @default.
- W2017691666 hasAuthorship W2017691666A5033465301 @default.
- W2017691666 hasAuthorship W2017691666A5038709136 @default.
- W2017691666 hasAuthorship W2017691666A5051722037 @default.
- W2017691666 hasAuthorship W2017691666A5060660907 @default.
- W2017691666 hasAuthorship W2017691666A5061027783 @default.
- W2017691666 hasAuthorship W2017691666A5071959205 @default.
- W2017691666 hasConcept C120665830 @default.
- W2017691666 hasConcept C121332964 @default.
- W2017691666 hasConcept C127413603 @default.
- W2017691666 hasConcept C147080431 @default.
- W2017691666 hasConcept C154945302 @default.
- W2017691666 hasConcept C171250308 @default.
- W2017691666 hasConcept C183696295 @default.
- W2017691666 hasConcept C185592680 @default.
- W2017691666 hasConcept C186060115 @default.
- W2017691666 hasConcept C192562407 @default.
- W2017691666 hasConcept C198531522 @default.
- W2017691666 hasConcept C2778576202 @default.
- W2017691666 hasConcept C41008148 @default.
- W2017691666 hasConcept C43617362 @default.
- W2017691666 hasConcept C86803240 @default.
- W2017691666 hasConceptScore W2017691666C120665830 @default.
- W2017691666 hasConceptScore W2017691666C121332964 @default.
- W2017691666 hasConceptScore W2017691666C127413603 @default.
- W2017691666 hasConceptScore W2017691666C147080431 @default.
- W2017691666 hasConceptScore W2017691666C154945302 @default.
- W2017691666 hasConceptScore W2017691666C171250308 @default.
- W2017691666 hasConceptScore W2017691666C183696295 @default.
- W2017691666 hasConceptScore W2017691666C185592680 @default.
- W2017691666 hasConceptScore W2017691666C186060115 @default.
- W2017691666 hasConceptScore W2017691666C192562407 @default.
- W2017691666 hasConceptScore W2017691666C198531522 @default.
- W2017691666 hasConceptScore W2017691666C2778576202 @default.
- W2017691666 hasConceptScore W2017691666C41008148 @default.
- W2017691666 hasConceptScore W2017691666C43617362 @default.
- W2017691666 hasConceptScore W2017691666C86803240 @default.
- W2017691666 hasLocation W20176916661 @default.
- W2017691666 hasLocation W20176916662 @default.