Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017697930> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2017697930 endingPage "215" @default.
- W2017697930 startingPage "215" @default.
- W2017697930 abstract "The authors propose a multiscale Bayesian texture segmentation algorithm that is based on a complex wavelet domain hidden Markov tree (HMT) model and a hybrid label tree (HLT) model. The HMT model is used to characterise the statistics of the magnitudes of complex wavelet coefficients. The HLT model is used to fuse the interscale and intrascale context information. In the HLT, the interscale information is fused according to the label transition probability directly resolved by an EM algorithm. The intrascale context information is also fused so as to smooth out the variations in the homogeneous regions. In addition, the statistical model at pixel-level resolution is formulated by a Gaussian mixture model (GMM) in the complex wavelet domain at scale 1, which can improve the accuracy of the pixel-level model. The experimental results on several texture images are used to evaluate the algorithm." @default.
- W2017697930 created "2016-06-24" @default.
- W2017697930 creator A5006414413 @default.
- W2017697930 creator A5066097726 @default.
- W2017697930 creator A5066772737 @default.
- W2017697930 creator A5076389260 @default.
- W2017697930 date "2004-01-01" @default.
- W2017697930 modified "2023-09-27" @default.
- W2017697930 title "Hidden Markov Bayesian texture segmentation using complex wavelet transform" @default.
- W2017697930 cites W1991806859 @default.
- W2017697930 cites W2013848746 @default.
- W2017697930 cites W2101897555 @default.
- W2017697930 cites W2109556009 @default.
- W2017697930 cites W2111727749 @default.
- W2017697930 cites W2119957939 @default.
- W2017697930 cites W2133693718 @default.
- W2017697930 cites W2134929491 @default.
- W2017697930 cites W2135788072 @default.
- W2017697930 cites W2137475834 @default.
- W2017697930 cites W2171793409 @default.
- W2017697930 doi "https://doi.org/10.1049/ip-vis:20040396" @default.
- W2017697930 hasPublicationYear "2004" @default.
- W2017697930 type Work @default.
- W2017697930 sameAs 2017697930 @default.
- W2017697930 citedByCount "21" @default.
- W2017697930 countsByYear W20176979302012 @default.
- W2017697930 countsByYear W20176979302013 @default.
- W2017697930 crossrefType "journal-article" @default.
- W2017697930 hasAuthorship W2017697930A5006414413 @default.
- W2017697930 hasAuthorship W2017697930A5066097726 @default.
- W2017697930 hasAuthorship W2017697930A5066772737 @default.
- W2017697930 hasAuthorship W2017697930A5076389260 @default.
- W2017697930 hasConcept C107673813 @default.
- W2017697930 hasConcept C124504099 @default.
- W2017697930 hasConcept C151730666 @default.
- W2017697930 hasConcept C153180895 @default.
- W2017697930 hasConcept C154945302 @default.
- W2017697930 hasConcept C155777637 @default.
- W2017697930 hasConcept C160633673 @default.
- W2017697930 hasConcept C196216189 @default.
- W2017697930 hasConcept C23224414 @default.
- W2017697930 hasConcept C2777885455 @default.
- W2017697930 hasConcept C2779343474 @default.
- W2017697930 hasConcept C33923547 @default.
- W2017697930 hasConcept C41008148 @default.
- W2017697930 hasConcept C47432892 @default.
- W2017697930 hasConcept C61224824 @default.
- W2017697930 hasConcept C86803240 @default.
- W2017697930 hasConcept C89600930 @default.
- W2017697930 hasConceptScore W2017697930C107673813 @default.
- W2017697930 hasConceptScore W2017697930C124504099 @default.
- W2017697930 hasConceptScore W2017697930C151730666 @default.
- W2017697930 hasConceptScore W2017697930C153180895 @default.
- W2017697930 hasConceptScore W2017697930C154945302 @default.
- W2017697930 hasConceptScore W2017697930C155777637 @default.
- W2017697930 hasConceptScore W2017697930C160633673 @default.
- W2017697930 hasConceptScore W2017697930C196216189 @default.
- W2017697930 hasConceptScore W2017697930C23224414 @default.
- W2017697930 hasConceptScore W2017697930C2777885455 @default.
- W2017697930 hasConceptScore W2017697930C2779343474 @default.
- W2017697930 hasConceptScore W2017697930C33923547 @default.
- W2017697930 hasConceptScore W2017697930C41008148 @default.
- W2017697930 hasConceptScore W2017697930C47432892 @default.
- W2017697930 hasConceptScore W2017697930C61224824 @default.
- W2017697930 hasConceptScore W2017697930C86803240 @default.
- W2017697930 hasConceptScore W2017697930C89600930 @default.
- W2017697930 hasIssue "3" @default.
- W2017697930 hasLocation W20176979301 @default.
- W2017697930 hasOpenAccess W2017697930 @default.
- W2017697930 hasPrimaryLocation W20176979301 @default.
- W2017697930 hasRelatedWork W1580875459 @default.
- W2017697930 hasRelatedWork W167794113 @default.
- W2017697930 hasRelatedWork W2017697930 @default.
- W2017697930 hasRelatedWork W2120997400 @default.
- W2017697930 hasRelatedWork W2123869488 @default.
- W2017697930 hasRelatedWork W2169450829 @default.
- W2017697930 hasRelatedWork W2253728893 @default.
- W2017697930 hasRelatedWork W2792520941 @default.
- W2017697930 hasRelatedWork W2907667403 @default.
- W2017697930 hasRelatedWork W3217351357 @default.
- W2017697930 hasVolume "151" @default.
- W2017697930 isParatext "false" @default.
- W2017697930 isRetracted "false" @default.
- W2017697930 magId "2017697930" @default.
- W2017697930 workType "article" @default.