Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017698840> ?p ?o ?g. }
- W2017698840 endingPage "2029" @default.
- W2017698840 startingPage "2016" @default.
- W2017698840 abstract "In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracle estimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: i) the designs are closed form rather than iterative; ii) the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP)." @default.
- W2017698840 created "2016-06-24" @default.
- W2017698840 creator A5021296194 @default.
- W2017698840 creator A5044634366 @default.
- W2017698840 creator A5079659442 @default.
- W2017698840 date "2013-04-01" @default.
- W2017698840 modified "2023-09-23" @default.
- W2017698840 title "Projection Design for Statistical Compressive Sensing: A Tight Frame Based Approach" @default.
- W2017698840 cites W1972091546 @default.
- W2017698840 cites W1973214845 @default.
- W2017698840 cites W2015418199 @default.
- W2017698840 cites W2020775053 @default.
- W2017698840 cites W2032873292 @default.
- W2017698840 cites W2040315679 @default.
- W2017698840 cites W2043511730 @default.
- W2017698840 cites W2071284784 @default.
- W2017698840 cites W2078204800 @default.
- W2017698840 cites W2086869478 @default.
- W2017698840 cites W2097323375 @default.
- W2017698840 cites W2098316308 @default.
- W2017698840 cites W2100526560 @default.
- W2017698840 cites W2101675075 @default.
- W2017698840 cites W2102129292 @default.
- W2017698840 cites W2103955025 @default.
- W2017698840 cites W2104783034 @default.
- W2017698840 cites W2104860501 @default.
- W2017698840 cites W2104987624 @default.
- W2017698840 cites W2105877514 @default.
- W2017698840 cites W2109515693 @default.
- W2017698840 cites W2110140246 @default.
- W2017698840 cites W2113327167 @default.
- W2017698840 cites W2116701188 @default.
- W2017698840 cites W2123107972 @default.
- W2017698840 cites W2127114523 @default.
- W2017698840 cites W2127119195 @default.
- W2017698840 cites W2128026227 @default.
- W2017698840 cites W2129131372 @default.
- W2017698840 cites W2134033146 @default.
- W2017698840 cites W2141159272 @default.
- W2017698840 cites W2144208059 @default.
- W2017698840 cites W2145096794 @default.
- W2017698840 cites W2146000945 @default.
- W2017698840 cites W2153663612 @default.
- W2017698840 cites W2159318219 @default.
- W2017698840 cites W2159700154 @default.
- W2017698840 cites W2161991491 @default.
- W2017698840 cites W2166046159 @default.
- W2017698840 cites W2168494960 @default.
- W2017698840 cites W2171394227 @default.
- W2017698840 cites W3100302110 @default.
- W2017698840 cites W3105340263 @default.
- W2017698840 cites W3125735862 @default.
- W2017698840 cites W4250955649 @default.
- W2017698840 doi "https://doi.org/10.1109/tsp.2013.2245661" @default.
- W2017698840 hasPublicationYear "2013" @default.
- W2017698840 type Work @default.
- W2017698840 sameAs 2017698840 @default.
- W2017698840 citedByCount "85" @default.
- W2017698840 countsByYear W20176988402013 @default.
- W2017698840 countsByYear W20176988402014 @default.
- W2017698840 countsByYear W20176988402015 @default.
- W2017698840 countsByYear W20176988402016 @default.
- W2017698840 countsByYear W20176988402017 @default.
- W2017698840 countsByYear W20176988402018 @default.
- W2017698840 countsByYear W20176988402019 @default.
- W2017698840 countsByYear W20176988402020 @default.
- W2017698840 countsByYear W20176988402021 @default.
- W2017698840 countsByYear W20176988402022 @default.
- W2017698840 countsByYear W20176988402023 @default.
- W2017698840 crossrefType "journal-article" @default.
- W2017698840 hasAuthorship W2017698840A5021296194 @default.
- W2017698840 hasAuthorship W2017698840A5044634366 @default.
- W2017698840 hasAuthorship W2017698840A5079659442 @default.
- W2017698840 hasBestOaLocation W20176988402 @default.
- W2017698840 hasConcept C105795698 @default.
- W2017698840 hasConcept C112680207 @default.
- W2017698840 hasConcept C11413529 @default.
- W2017698840 hasConcept C115903868 @default.
- W2017698840 hasConcept C121332964 @default.
- W2017698840 hasConcept C124066611 @default.
- W2017698840 hasConcept C124851039 @default.
- W2017698840 hasConcept C126255220 @default.
- W2017698840 hasConcept C139945424 @default.
- W2017698840 hasConcept C156872377 @default.
- W2017698840 hasConcept C157972887 @default.
- W2017698840 hasConcept C158693339 @default.
- W2017698840 hasConcept C17744445 @default.
- W2017698840 hasConcept C185429906 @default.
- W2017698840 hasConcept C191795146 @default.
- W2017698840 hasConcept C199539241 @default.
- W2017698840 hasConcept C2524010 @default.
- W2017698840 hasConcept C33923547 @default.
- W2017698840 hasConcept C41008148 @default.
- W2017698840 hasConcept C55166926 @default.
- W2017698840 hasConcept C62520636 @default.
- W2017698840 hasConcept C92207270 @default.
- W2017698840 hasConcept C99217422 @default.
- W2017698840 hasConceptScore W2017698840C105795698 @default.