Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017702854> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2017702854 endingPage "2143" @default.
- W2017702854 startingPage "2134" @default.
- W2017702854 abstract "Investigation of Hopfield's model of associative-memory implementation by a neural network led to an associative-memory model based on a generalized potential surface. In this model, there are no spurious memories, and any set of desired points can be stored with unlimited capacity (in the continuous-time real-space version of the model). There are no limit cycles in this system, and the size of all basins of attraction can reach up to half the distance between stored points by proper choice of the design parameters. A discrete-time version with its state-space being the unit hypercube is also derived, and admits a worst-case capacity (under any fixed desired size of basins of attractions) which grows exponentially with the number of neurons at a rate that is asymptotically optimal in the information theory sense. The computational complexity of this model is similar to that of the Hopfield memory. The results are derived under an axiomatic approach which determines the desired properties and shows that the above-mentioned model is the only one to achieve them." @default.
- W2017702854 created "2016-06-24" @default.
- W2017702854 creator A5000594503 @default.
- W2017702854 creator A5019243217 @default.
- W2017702854 date "1988-03-01" @default.
- W2017702854 modified "2023-09-27" @default.
- W2017702854 title "General potential surfaces and neural networks" @default.
- W2017702854 cites W1965880854 @default.
- W2017702854 cites W1966764756 @default.
- W2017702854 cites W1984431842 @default.
- W2017702854 cites W1995114494 @default.
- W2017702854 cites W2010526455 @default.
- W2017702854 cites W2040870209 @default.
- W2017702854 cites W2059146732 @default.
- W2017702854 cites W2069129925 @default.
- W2017702854 cites W2080792322 @default.
- W2017702854 cites W2087636648 @default.
- W2017702854 cites W2092632480 @default.
- W2017702854 cites W2128084896 @default.
- W2017702854 cites W4376453414 @default.
- W2017702854 cites W3147726452 @default.
- W2017702854 doi "https://doi.org/10.1103/physreva.37.2134" @default.
- W2017702854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9899907" @default.
- W2017702854 hasPublicationYear "1988" @default.
- W2017702854 type Work @default.
- W2017702854 sameAs 2017702854 @default.
- W2017702854 citedByCount "13" @default.
- W2017702854 countsByYear W20177028542013 @default.
- W2017702854 countsByYear W20177028542014 @default.
- W2017702854 countsByYear W20177028542017 @default.
- W2017702854 crossrefType "journal-article" @default.
- W2017702854 hasAuthorship W2017702854A5000594503 @default.
- W2017702854 hasAuthorship W2017702854A5019243217 @default.
- W2017702854 hasConcept C105795698 @default.
- W2017702854 hasConcept C114614502 @default.
- W2017702854 hasConcept C119857082 @default.
- W2017702854 hasConcept C120620853 @default.
- W2017702854 hasConcept C134306372 @default.
- W2017702854 hasConcept C151201525 @default.
- W2017702854 hasConcept C154945302 @default.
- W2017702854 hasConcept C159423971 @default.
- W2017702854 hasConcept C173608175 @default.
- W2017702854 hasConcept C177264268 @default.
- W2017702854 hasConcept C184720557 @default.
- W2017702854 hasConcept C199360897 @default.
- W2017702854 hasConcept C202444582 @default.
- W2017702854 hasConcept C33923547 @default.
- W2017702854 hasConcept C41008148 @default.
- W2017702854 hasConcept C46421273 @default.
- W2017702854 hasConcept C50644808 @default.
- W2017702854 hasConcept C50820777 @default.
- W2017702854 hasConcept C53442348 @default.
- W2017702854 hasConcept C72434380 @default.
- W2017702854 hasConcept C97256817 @default.
- W2017702854 hasConceptScore W2017702854C105795698 @default.
- W2017702854 hasConceptScore W2017702854C114614502 @default.
- W2017702854 hasConceptScore W2017702854C119857082 @default.
- W2017702854 hasConceptScore W2017702854C120620853 @default.
- W2017702854 hasConceptScore W2017702854C134306372 @default.
- W2017702854 hasConceptScore W2017702854C151201525 @default.
- W2017702854 hasConceptScore W2017702854C154945302 @default.
- W2017702854 hasConceptScore W2017702854C159423971 @default.
- W2017702854 hasConceptScore W2017702854C173608175 @default.
- W2017702854 hasConceptScore W2017702854C177264268 @default.
- W2017702854 hasConceptScore W2017702854C184720557 @default.
- W2017702854 hasConceptScore W2017702854C199360897 @default.
- W2017702854 hasConceptScore W2017702854C202444582 @default.
- W2017702854 hasConceptScore W2017702854C33923547 @default.
- W2017702854 hasConceptScore W2017702854C41008148 @default.
- W2017702854 hasConceptScore W2017702854C46421273 @default.
- W2017702854 hasConceptScore W2017702854C50644808 @default.
- W2017702854 hasConceptScore W2017702854C50820777 @default.
- W2017702854 hasConceptScore W2017702854C53442348 @default.
- W2017702854 hasConceptScore W2017702854C72434380 @default.
- W2017702854 hasConceptScore W2017702854C97256817 @default.
- W2017702854 hasIssue "6" @default.
- W2017702854 hasLocation W20177028541 @default.
- W2017702854 hasLocation W20177028542 @default.
- W2017702854 hasOpenAccess W2017702854 @default.
- W2017702854 hasPrimaryLocation W20177028541 @default.
- W2017702854 hasRelatedWork W1675968628 @default.
- W2017702854 hasRelatedWork W1936509470 @default.
- W2017702854 hasRelatedWork W1991689182 @default.
- W2017702854 hasRelatedWork W2096654516 @default.
- W2017702854 hasRelatedWork W2246264227 @default.
- W2017702854 hasRelatedWork W2769111744 @default.
- W2017702854 hasRelatedWork W2921345731 @default.
- W2017702854 hasRelatedWork W3087113781 @default.
- W2017702854 hasRelatedWork W4212962234 @default.
- W2017702854 hasRelatedWork W4321273133 @default.
- W2017702854 hasVolume "37" @default.
- W2017702854 isParatext "false" @default.
- W2017702854 isRetracted "false" @default.
- W2017702854 magId "2017702854" @default.
- W2017702854 workType "article" @default.