Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017713426> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2017713426 endingPage "1119" @default.
- W2017713426 startingPage "1114" @default.
- W2017713426 abstract "The fact that some cervical smears result in false-negative findings is an unavoidable and unpredictable consequence of the conventional (manual microscopic) method of screening. Errors in the detection and interpretation of abnormality are cited as leading causes of false-negative cytology findings; these are random errors that are not known to correlate with any patient risk factor, which makes the false-negative findings a silent threat that is difficult to prevent. Described by many as a labor-intensive procedure, the microscopic evaluation of a cervical smear involves a detailed search among hundreds of thousands of cells on each smear for a possible few that may indicate abnormality. Investigations into causes of false-negative findings preceding the discovery of high-grade lesions found that many smears had very few diagnostic cells that were often very small in size. These small cells were initially overlooked or misinterpreted and repeatedly missed on rescreening. PAPNET testing is designed to supplement conventional screening by detecting abnormal cells that initially may have been missed by microscopic examination. This interactive system uses neural networks, a type of artificial intelligence well suited for pattern recognition, to automate the arduous search for abnormality. The instrument focuses the review of suspicious cells by a trained cytologist. Clinical studies indicate that PAPNET testing is sensitive to abnormality typically missed by conventional screening and that its use as a supplemental test improves the accuracy of screening." @default.
- W2017713426 created "2016-06-24" @default.
- W2017713426 creator A5056639652 @default.
- W2017713426 date "1996-10-01" @default.
- W2017713426 modified "2023-10-16" @default.
- W2017713426 title "Reducing false negatives in clinical practice: The role of neural network technology" @default.
- W2017713426 cites W1557886194 @default.
- W2017713426 cites W1642988516 @default.
- W2017713426 cites W1966159053 @default.
- W2017713426 cites W1972972015 @default.
- W2017713426 cites W1978401603 @default.
- W2017713426 cites W1988039152 @default.
- W2017713426 cites W1997777628 @default.
- W2017713426 cites W2007809982 @default.
- W2017713426 cites W2011412530 @default.
- W2017713426 cites W2027132892 @default.
- W2017713426 cites W2073567091 @default.
- W2017713426 cites W2092379037 @default.
- W2017713426 cites W2111591601 @default.
- W2017713426 cites W2143772324 @default.
- W2017713426 cites W2151029773 @default.
- W2017713426 cites W2190357270 @default.
- W2017713426 cites W2317714237 @default.
- W2017713426 cites W2332708234 @default.
- W2017713426 doi "https://doi.org/10.1016/s0002-9378(96)70014-5" @default.
- W2017713426 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8885796" @default.
- W2017713426 hasPublicationYear "1996" @default.
- W2017713426 type Work @default.
- W2017713426 sameAs 2017713426 @default.
- W2017713426 citedByCount "23" @default.
- W2017713426 countsByYear W20177134262013 @default.
- W2017713426 countsByYear W20177134262014 @default.
- W2017713426 countsByYear W20177134262023 @default.
- W2017713426 crossrefType "journal-article" @default.
- W2017713426 hasAuthorship W2017713426A5056639652 @default.
- W2017713426 hasConcept C118552586 @default.
- W2017713426 hasConcept C142724271 @default.
- W2017713426 hasConcept C50965678 @default.
- W2017713426 hasConcept C71924100 @default.
- W2017713426 hasConceptScore W2017713426C118552586 @default.
- W2017713426 hasConceptScore W2017713426C142724271 @default.
- W2017713426 hasConceptScore W2017713426C50965678 @default.
- W2017713426 hasConceptScore W2017713426C71924100 @default.
- W2017713426 hasIssue "4" @default.
- W2017713426 hasLocation W20177134261 @default.
- W2017713426 hasLocation W20177134262 @default.
- W2017713426 hasOpenAccess W2017713426 @default.
- W2017713426 hasPrimaryLocation W20177134261 @default.
- W2017713426 hasRelatedWork W1488694185 @default.
- W2017713426 hasRelatedWork W1852171717 @default.
- W2017713426 hasRelatedWork W1995515455 @default.
- W2017713426 hasRelatedWork W1997148186 @default.
- W2017713426 hasRelatedWork W2080531066 @default.
- W2017713426 hasRelatedWork W2748952813 @default.
- W2017713426 hasRelatedWork W2899084033 @default.
- W2017713426 hasRelatedWork W3031052312 @default.
- W2017713426 hasRelatedWork W3032375762 @default.
- W2017713426 hasRelatedWork W3108674512 @default.
- W2017713426 hasVolume "175" @default.
- W2017713426 isParatext "false" @default.
- W2017713426 isRetracted "false" @default.
- W2017713426 magId "2017713426" @default.
- W2017713426 workType "article" @default.