Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017719162> ?p ?o ?g. }
- W2017719162 endingPage "33" @default.
- W2017719162 startingPage "33" @default.
- W2017719162 abstract "We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placing them on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation." @default.
- W2017719162 created "2016-06-24" @default.
- W2017719162 creator A5055424284 @default.
- W2017719162 creator A5055609078 @default.
- W2017719162 creator A5071676678 @default.
- W2017719162 creator A5072420646 @default.
- W2017719162 creator A5091245996 @default.
- W2017719162 date "2014-05-19" @default.
- W2017719162 modified "2023-10-18" @default.
- W2017719162 title "FLEXIBLE AND SCALABLE METHODS FOR QUANTIFYING STOCHASTIC VARIABILITY IN THE ERA OF MASSIVE TIME-DOMAIN ASTRONOMICAL DATA SETS" @default.
- W2017719162 cites W172337722 @default.
- W2017719162 cites W175245090 @default.
- W2017719162 cites W18773837 @default.
- W2017719162 cites W1968371014 @default.
- W2017719162 cites W1971937422 @default.
- W2017719162 cites W1976824769 @default.
- W2017719162 cites W1986316936 @default.
- W2017719162 cites W1994576009 @default.
- W2017719162 cites W1998673393 @default.
- W2017719162 cites W1999237239 @default.
- W2017719162 cites W2000746376 @default.
- W2017719162 cites W2011614275 @default.
- W2017719162 cites W2015406274 @default.
- W2017719162 cites W2017660056 @default.
- W2017719162 cites W2020434357 @default.
- W2017719162 cites W2021277605 @default.
- W2017719162 cites W2024487072 @default.
- W2017719162 cites W2036919467 @default.
- W2017719162 cites W2044770006 @default.
- W2017719162 cites W2045609633 @default.
- W2017719162 cites W2049615433 @default.
- W2017719162 cites W2057765075 @default.
- W2017719162 cites W2063544486 @default.
- W2017719162 cites W2064233379 @default.
- W2017719162 cites W2065823691 @default.
- W2017719162 cites W2067366609 @default.
- W2017719162 cites W2069739265 @default.
- W2017719162 cites W2074559017 @default.
- W2017719162 cites W2076602941 @default.
- W2017719162 cites W2079162924 @default.
- W2017719162 cites W2082031432 @default.
- W2017719162 cites W2083217178 @default.
- W2017719162 cites W2128806658 @default.
- W2017719162 cites W2142474918 @default.
- W2017719162 cites W2143243766 @default.
- W2017719162 cites W2154718864 @default.
- W2017719162 cites W2163669663 @default.
- W2017719162 cites W2245290260 @default.
- W2017719162 cites W2798056406 @default.
- W2017719162 cites W2950558828 @default.
- W2017719162 cites W3098367743 @default.
- W2017719162 cites W3098725709 @default.
- W2017719162 cites W3099014346 @default.
- W2017719162 cites W3099304242 @default.
- W2017719162 cites W3100036146 @default.
- W2017719162 cites W3101983062 @default.
- W2017719162 cites W3102047144 @default.
- W2017719162 cites W3102435730 @default.
- W2017719162 cites W3102850460 @default.
- W2017719162 cites W3103249761 @default.
- W2017719162 cites W3103515782 @default.
- W2017719162 cites W3104997443 @default.
- W2017719162 cites W3122131205 @default.
- W2017719162 cites W3122776185 @default.
- W2017719162 cites W3123734611 @default.
- W2017719162 cites W3125033456 @default.
- W2017719162 cites W4234011924 @default.
- W2017719162 doi "https://doi.org/10.1088/0004-637x/788/1/33" @default.
- W2017719162 hasPublicationYear "2014" @default.
- W2017719162 type Work @default.
- W2017719162 sameAs 2017719162 @default.
- W2017719162 citedByCount "168" @default.
- W2017719162 countsByYear W20177191622014 @default.
- W2017719162 countsByYear W20177191622015 @default.
- W2017719162 countsByYear W20177191622016 @default.
- W2017719162 countsByYear W20177191622017 @default.
- W2017719162 countsByYear W20177191622018 @default.
- W2017719162 countsByYear W20177191622019 @default.
- W2017719162 countsByYear W20177191622020 @default.
- W2017719162 countsByYear W20177191622021 @default.
- W2017719162 countsByYear W20177191622022 @default.
- W2017719162 countsByYear W20177191622023 @default.
- W2017719162 crossrefType "journal-article" @default.
- W2017719162 hasAuthorship W2017719162A5055424284 @default.
- W2017719162 hasAuthorship W2017719162A5055609078 @default.
- W2017719162 hasAuthorship W2017719162A5071676678 @default.
- W2017719162 hasAuthorship W2017719162A5072420646 @default.
- W2017719162 hasAuthorship W2017719162A5091245996 @default.
- W2017719162 hasBestOaLocation W20177191621 @default.
- W2017719162 hasConcept C105795698 @default.
- W2017719162 hasConcept C107673813 @default.
- W2017719162 hasConcept C11413529 @default.
- W2017719162 hasConcept C121332964 @default.
- W2017719162 hasConcept C121864883 @default.
- W2017719162 hasConcept C130726490 @default.
- W2017719162 hasConcept C159877910 @default.
- W2017719162 hasConcept C159985019 @default.
- W2017719162 hasConcept C168110828 @default.