Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017726214> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2017726214 endingPage "040201" @default.
- W2017726214 startingPage "040201" @default.
- W2017726214 abstract "The Bayesian and Maximum Entropy Methods are now standard routines in various data analyses, irrespective of ones own preference to the more conventional approach based on so-called frequentists understanding of the notion of the probability. It is not the purpose of the Editor to show all achievements of these methods in various branches of science, technology and medicine. In the case of condensed matter physics most of the oldest examples of Bayesian analysis can be found in the excellent tutorial textbooks by Sivia and Skilling [1], and Bretthorst [2], while the application of the Maximum Entropy Methods were described in `Maximum Entropy in Action' [3]. On the list of questions addressed one finds such problems as deconvolution and reconstruction of the complicated spectra, e.g. counting the number of lines hidden within the spectrum observed with always finite resolution, reconstruction of charge, spin and momentum density distribution from an incomplete sets of data, etc. On the theoretical side one might find problems like estimation of interatomic potentials [4], application of the MEM to quantum Monte Carlo data [5], Bayesian approach to inverse quantum statistics [6], very general to statistical mechanics [7] etc. Obviously, in spite of the power of the Bayesian and Maximum Entropy Methods, it is not possible for everything to be solved in a unique way by application of these particular methods of analysis, and one of the problems which is often raised is connected not only with a uniqueness of a reconstruction of a given distribution (map) but also with its accuracy (error maps). In this `Comments' section we present a few papers showing more recent advances and views, and highlighting some of the aforementioned problems." @default.
- W2017726214 created "2016-06-24" @default.
- W2017726214 creator A5087521827 @default.
- W2017726214 date "2008-07-07" @default.
- W2017726214 modified "2023-10-10" @default.
- W2017726214 title "Bayesian and Maximum Entropy Methods" @default.
- W2017726214 doi "https://doi.org/10.1088/0031-8949/79/4/040201" @default.
- W2017726214 hasPublicationYear "2008" @default.
- W2017726214 type Work @default.
- W2017726214 sameAs 2017726214 @default.
- W2017726214 citedByCount "0" @default.
- W2017726214 crossrefType "journal-article" @default.
- W2017726214 hasAuthorship W2017726214A5087521827 @default.
- W2017726214 hasConcept C106301342 @default.
- W2017726214 hasConcept C107673813 @default.
- W2017726214 hasConcept C11413529 @default.
- W2017726214 hasConcept C121332964 @default.
- W2017726214 hasConcept C121864883 @default.
- W2017726214 hasConcept C134306372 @default.
- W2017726214 hasConcept C135252773 @default.
- W2017726214 hasConcept C154945302 @default.
- W2017726214 hasConcept C28826006 @default.
- W2017726214 hasConcept C33923547 @default.
- W2017726214 hasConcept C41008148 @default.
- W2017726214 hasConcept C62520636 @default.
- W2017726214 hasConcept C9679016 @default.
- W2017726214 hasConceptScore W2017726214C106301342 @default.
- W2017726214 hasConceptScore W2017726214C107673813 @default.
- W2017726214 hasConceptScore W2017726214C11413529 @default.
- W2017726214 hasConceptScore W2017726214C121332964 @default.
- W2017726214 hasConceptScore W2017726214C121864883 @default.
- W2017726214 hasConceptScore W2017726214C134306372 @default.
- W2017726214 hasConceptScore W2017726214C135252773 @default.
- W2017726214 hasConceptScore W2017726214C154945302 @default.
- W2017726214 hasConceptScore W2017726214C28826006 @default.
- W2017726214 hasConceptScore W2017726214C33923547 @default.
- W2017726214 hasConceptScore W2017726214C41008148 @default.
- W2017726214 hasConceptScore W2017726214C62520636 @default.
- W2017726214 hasConceptScore W2017726214C9679016 @default.
- W2017726214 hasIssue "4" @default.
- W2017726214 hasLocation W20177262141 @default.
- W2017726214 hasOpenAccess W2017726214 @default.
- W2017726214 hasPrimaryLocation W20177262141 @default.
- W2017726214 hasRelatedWork W2001024271 @default.
- W2017726214 hasRelatedWork W2146499935 @default.
- W2017726214 hasRelatedWork W2154579008 @default.
- W2017726214 hasRelatedWork W2161994765 @default.
- W2017726214 hasRelatedWork W2259778894 @default.
- W2017726214 hasRelatedWork W3017803990 @default.
- W2017726214 hasRelatedWork W3098430058 @default.
- W2017726214 hasRelatedWork W4225529678 @default.
- W2017726214 hasRelatedWork W1619097585 @default.
- W2017726214 hasRelatedWork W4206877301 @default.
- W2017726214 hasVolume "79" @default.
- W2017726214 isParatext "false" @default.
- W2017726214 isRetracted "false" @default.
- W2017726214 magId "2017726214" @default.
- W2017726214 workType "article" @default.