Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017746108> ?p ?o ?g. }
- W2017746108 endingPage "1699" @default.
- W2017746108 startingPage "1689" @default.
- W2017746108 abstract "Abstract Models for the forecasting of crop yields using remotely-sensed satellite data are studied intensively worldwide. After reviewing the experience gained by other researchers in this field, we selected procedures which might be suitable for the estimation of corn and wheat yields in Hungary. In order to study the relations between various remotely-sensed spectral data (and their combinations) and the actually measured final yields we investigated archived agricultural and Landsat MSS spectral data for 1984. A linear relation has been sought and found between the yield data for 47 corn and 55 wheat fields in Hajdú-Bihar county and various weighted and summed spectral quantities. Among the vegetation indices derived from satellite data and corrected for atmospheric effects the most promising were the spectral indices sensitive to the green biomass. The latter, summed over a certain period in the growing season, exhibited a regression of 45-86 per cent, depending on the crop and the period of summation. Using the best models we performed regional yield estimation studies on 295 winter wheat and 218 corn fields. Taking half the crop fields used in the study we determined the yield estimation model and used this to estimate the overall crop production for the other half of the fields. The error of overall corn production estimated by this way turn out to be less than 2 per cent. The model developed for winter wheat proved to be sensitive to the wheat variety." @default.
- W2017746108 created "2016-06-24" @default.
- W2017746108 creator A5009587490 @default.
- W2017746108 creator A5031306637 @default.
- W2017746108 creator A5042995775 @default.
- W2017746108 creator A5046476941 @default.
- W2017746108 creator A5081672670 @default.
- W2017746108 date "1996-06-01" @default.
- W2017746108 modified "2023-09-27" @default.
- W2017746108 title "Yield estimation for corn and wheat in the Hungarian Great Plain using Landsat MSS data" @default.
- W2017746108 cites W1963541227 @default.
- W2017746108 cites W1966517174 @default.
- W2017746108 cites W1982483039 @default.
- W2017746108 cites W1983710841 @default.
- W2017746108 cites W1985713719 @default.
- W2017746108 cites W1996954603 @default.
- W2017746108 cites W2005310724 @default.
- W2017746108 cites W2023184159 @default.
- W2017746108 cites W2036706101 @default.
- W2017746108 cites W2051374862 @default.
- W2017746108 cites W2055074241 @default.
- W2017746108 cites W2072456441 @default.
- W2017746108 cites W2080427124 @default.
- W2017746108 cites W2086187277 @default.
- W2017746108 cites W2094136190 @default.
- W2017746108 cites W2110893801 @default.
- W2017746108 cites W2161220916 @default.
- W2017746108 doi "https://doi.org/10.1080/01431169608948732" @default.
- W2017746108 hasPublicationYear "1996" @default.
- W2017746108 type Work @default.
- W2017746108 sameAs 2017746108 @default.
- W2017746108 citedByCount "46" @default.
- W2017746108 countsByYear W20177461082012 @default.
- W2017746108 countsByYear W20177461082013 @default.
- W2017746108 countsByYear W20177461082014 @default.
- W2017746108 countsByYear W20177461082015 @default.
- W2017746108 countsByYear W20177461082016 @default.
- W2017746108 countsByYear W20177461082017 @default.
- W2017746108 countsByYear W20177461082018 @default.
- W2017746108 countsByYear W20177461082019 @default.
- W2017746108 countsByYear W20177461082020 @default.
- W2017746108 countsByYear W20177461082021 @default.
- W2017746108 countsByYear W20177461082022 @default.
- W2017746108 countsByYear W20177461082023 @default.
- W2017746108 crossrefType "journal-article" @default.
- W2017746108 hasAuthorship W2017746108A5009587490 @default.
- W2017746108 hasAuthorship W2017746108A5031306637 @default.
- W2017746108 hasAuthorship W2017746108A5042995775 @default.
- W2017746108 hasAuthorship W2017746108A5046476941 @default.
- W2017746108 hasAuthorship W2017746108A5081672670 @default.
- W2017746108 hasConcept C115540264 @default.
- W2017746108 hasConcept C118518473 @default.
- W2017746108 hasConcept C126343540 @default.
- W2017746108 hasConcept C127413603 @default.
- W2017746108 hasConcept C134121241 @default.
- W2017746108 hasConcept C137580998 @default.
- W2017746108 hasConcept C137660486 @default.
- W2017746108 hasConcept C142724271 @default.
- W2017746108 hasConcept C146978453 @default.
- W2017746108 hasConcept C162324750 @default.
- W2017746108 hasConcept C166957645 @default.
- W2017746108 hasConcept C187736073 @default.
- W2017746108 hasConcept C191897082 @default.
- W2017746108 hasConcept C192562407 @default.
- W2017746108 hasConcept C19269812 @default.
- W2017746108 hasConcept C205649164 @default.
- W2017746108 hasConcept C2776133958 @default.
- W2017746108 hasConcept C2780119695 @default.
- W2017746108 hasConcept C2993531722 @default.
- W2017746108 hasConcept C3018661444 @default.
- W2017746108 hasConcept C33923547 @default.
- W2017746108 hasConcept C39432304 @default.
- W2017746108 hasConcept C62649853 @default.
- W2017746108 hasConcept C6557445 @default.
- W2017746108 hasConcept C71924100 @default.
- W2017746108 hasConcept C86803240 @default.
- W2017746108 hasConcept C96250715 @default.
- W2017746108 hasConceptScore W2017746108C115540264 @default.
- W2017746108 hasConceptScore W2017746108C118518473 @default.
- W2017746108 hasConceptScore W2017746108C126343540 @default.
- W2017746108 hasConceptScore W2017746108C127413603 @default.
- W2017746108 hasConceptScore W2017746108C134121241 @default.
- W2017746108 hasConceptScore W2017746108C137580998 @default.
- W2017746108 hasConceptScore W2017746108C137660486 @default.
- W2017746108 hasConceptScore W2017746108C142724271 @default.
- W2017746108 hasConceptScore W2017746108C146978453 @default.
- W2017746108 hasConceptScore W2017746108C162324750 @default.
- W2017746108 hasConceptScore W2017746108C166957645 @default.
- W2017746108 hasConceptScore W2017746108C187736073 @default.
- W2017746108 hasConceptScore W2017746108C191897082 @default.
- W2017746108 hasConceptScore W2017746108C192562407 @default.
- W2017746108 hasConceptScore W2017746108C19269812 @default.
- W2017746108 hasConceptScore W2017746108C205649164 @default.
- W2017746108 hasConceptScore W2017746108C2776133958 @default.
- W2017746108 hasConceptScore W2017746108C2780119695 @default.
- W2017746108 hasConceptScore W2017746108C2993531722 @default.
- W2017746108 hasConceptScore W2017746108C3018661444 @default.
- W2017746108 hasConceptScore W2017746108C33923547 @default.