Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017756790> ?p ?o ?g. }
- W2017756790 endingPage "10953" @default.
- W2017756790 startingPage "10939" @default.
- W2017756790 abstract "This work brings together dynamical and structural information at a molecular level for cellulose acetate being an original contribution to the general description of polysaccharide properties. In particular, it allowed reinterpreting the secondary relaxation mechanisms that are still controversial in the literature; a compilation of data provided by different authors is provided. Detailed dynamical information is provided by dielectric relaxation spectroscopy (DRS) (10−1−106 Hz) for cellulose acetate (CA) in the sub-Tg region below ambient temperature; results were compared with cellulose acetate structured as an asymmetric membrane (CAmb). In samples with low water content, two secondary relaxation processes between 173 and 298 K were identified by DRS, associated with localized mobility. The process located at the lowest temperatures (process I) has a different mobility in CA relative to CAmb. The identical crystalline/amorphous state of both materials allowed rationalizing the distinct behavior in terms of polymeric arrangement and ability for water uptake. The looser structure of the CA relative to CAmb as confirmed by FTIR, TGA, and DSC analysis makes more sites accessible to water molecules, resulting in a higher water retention in CA (2.73% w/w) relative to CAmb (1.60% w/w) and an increased molecular mobility in the former due to a plasticizing effect. In both materials, process I is significantly influenced by hydration, shifting to higher frequencies and lower temperatures upon water uptake. This process seems to be associated with mobility occurring within the monomeric unit, which embraces the two anhydroglucose rings connected by the glycosidic linkage and the polar groups directly attached to it. It should involve a very limited length scale, as suggested by its location, far below the glass transition, and the τ∞ value with a low entropic effect. The relaxation process that emerges later, process II, is similar for both samples being much less influenced by water but experiencing a slight antiplasticizing effect shifting to lower frequencies and higher temperatures upon hydration. It should involve side group motions, strongly coupled to the mobility of the anhydroglucose rings, which become hindered probably due to establishment of H-bonds with water molecules. The plasticizing/antiplasticizing effect is being discussed only on the basis of the frequency position of the relaxation peak. Processes I and II merge into a broad relaxation (γdry) upon water removal in both CA and CAmb, however evolving slower in the former with drying, due to a more disordered structure of CA that allows water to interact with more internal sites in the polymer. At higher temperatures (T ≥ 353 K), a process emerges in the high frequency side of the dynamic α-relaxation which is compatible with a βJG-relaxation. The structured specimen CAmb provided an additional way to probe the morphological changes undergone by the material when annealed to temperatures higher than 353 K, originating an increase in the dielectric response. This effect can be associated with a skin densification and partial collapse of the membrane porous network, as observed by SEM." @default.
- W2017756790 created "2016-06-24" @default.
- W2017756790 creator A5015027631 @default.
- W2017756790 creator A5024886926 @default.
- W2017756790 creator A5026295384 @default.
- W2017756790 creator A5045944360 @default.
- W2017756790 creator A5071688029 @default.
- W2017756790 creator A5080600705 @default.
- W2017756790 creator A5089692758 @default.
- W2017756790 date "2010-08-06" @default.
- W2017756790 modified "2023-09-27" @default.
- W2017756790 title "Dynamical Characterization of a Cellulose Acetate Polysaccharide" @default.
- W2017756790 cites W1504732605 @default.
- W2017756790 cites W19358361 @default.
- W2017756790 cites W1965344628 @default.
- W2017756790 cites W1971342252 @default.
- W2017756790 cites W1971638249 @default.
- W2017756790 cites W1974801466 @default.
- W2017756790 cites W1978241435 @default.
- W2017756790 cites W1980700366 @default.
- W2017756790 cites W1980788708 @default.
- W2017756790 cites W1988037484 @default.
- W2017756790 cites W1988098903 @default.
- W2017756790 cites W1995258674 @default.
- W2017756790 cites W2002347715 @default.
- W2017756790 cites W2003828598 @default.
- W2017756790 cites W2004843979 @default.
- W2017756790 cites W2009948012 @default.
- W2017756790 cites W2011867963 @default.
- W2017756790 cites W2015813945 @default.
- W2017756790 cites W2016177912 @default.
- W2017756790 cites W2017520724 @default.
- W2017756790 cites W2020659436 @default.
- W2017756790 cites W2021839404 @default.
- W2017756790 cites W2024157019 @default.
- W2017756790 cites W2036093094 @default.
- W2017756790 cites W2043947008 @default.
- W2017756790 cites W2045442437 @default.
- W2017756790 cites W2047168266 @default.
- W2017756790 cites W2047646245 @default.
- W2017756790 cites W2048501955 @default.
- W2017756790 cites W2048509517 @default.
- W2017756790 cites W2048777127 @default.
- W2017756790 cites W2050123888 @default.
- W2017756790 cites W2050461511 @default.
- W2017756790 cites W2052304083 @default.
- W2017756790 cites W2053871936 @default.
- W2017756790 cites W2056543106 @default.
- W2017756790 cites W2058472032 @default.
- W2017756790 cites W2059930910 @default.
- W2017756790 cites W2062613788 @default.
- W2017756790 cites W2064432972 @default.
- W2017756790 cites W2071581794 @default.
- W2017756790 cites W2086538665 @default.
- W2017756790 cites W2086739819 @default.
- W2017756790 cites W2087218212 @default.
- W2017756790 cites W2087512586 @default.
- W2017756790 cites W2088654232 @default.
- W2017756790 cites W2089760233 @default.
- W2017756790 cites W2093321660 @default.
- W2017756790 cites W2109951274 @default.
- W2017756790 cites W2120770718 @default.
- W2017756790 cites W2122446352 @default.
- W2017756790 cites W2143819526 @default.
- W2017756790 cites W2146084535 @default.
- W2017756790 cites W2156913485 @default.
- W2017756790 cites W2157685532 @default.
- W2017756790 cites W2496970649 @default.
- W2017756790 cites W4242723661 @default.
- W2017756790 cites W4299319396 @default.
- W2017756790 doi "https://doi.org/10.1021/jp101665h" @default.
- W2017756790 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20690651" @default.
- W2017756790 hasPublicationYear "2010" @default.
- W2017756790 type Work @default.
- W2017756790 sameAs 2017756790 @default.
- W2017756790 citedByCount "30" @default.
- W2017756790 countsByYear W20177567902013 @default.
- W2017756790 countsByYear W20177567902014 @default.
- W2017756790 countsByYear W20177567902015 @default.
- W2017756790 countsByYear W20177567902016 @default.
- W2017756790 countsByYear W20177567902017 @default.
- W2017756790 countsByYear W20177567902018 @default.
- W2017756790 countsByYear W20177567902019 @default.
- W2017756790 countsByYear W20177567902021 @default.
- W2017756790 countsByYear W20177567902023 @default.
- W2017756790 crossrefType "journal-article" @default.
- W2017756790 hasAuthorship W2017756790A5015027631 @default.
- W2017756790 hasAuthorship W2017756790A5024886926 @default.
- W2017756790 hasAuthorship W2017756790A5026295384 @default.
- W2017756790 hasAuthorship W2017756790A5045944360 @default.
- W2017756790 hasAuthorship W2017756790A5071688029 @default.
- W2017756790 hasAuthorship W2017756790A5080600705 @default.
- W2017756790 hasAuthorship W2017756790A5089692758 @default.
- W2017756790 hasConcept C127413603 @default.
- W2017756790 hasConcept C150487720 @default.
- W2017756790 hasConcept C15744967 @default.
- W2017756790 hasConcept C166940927 @default.
- W2017756790 hasConcept C178790620 @default.