Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017759254> ?p ?o ?g. }
- W2017759254 endingPage "244" @default.
- W2017759254 startingPage "181" @default.
- W2017759254 abstract "A 212-layer, thermodynamic numerical model is used to study the dynamics, thermodynamics and mixed-layer physics of Indian Ocean circulation. A surface mixed layer of temperature Tm is imbedded in the upper layer of the model, and entrainment and detrainment in the mixed layer are determined by wind stirring and surface cooling. There is also detrainment wd through the base of the upper layer that models subduction. Monthly climatological data, including air temperature Ta and specific humidity qa, are used to force the model, and model sea surface temperature (SST), Tm, is used to determine the sensible and latent heat fluxes. With a few notable exceptions, our main-run solution compares well with observed current and SST data; this is particularly true for Tm, which typically differs from observed SST by less than 0.5–1.0°C. Our analyses focus on three topics: the relative importance of remote versus local forcing, the thermodynamic processes that determine the model SST field, and the development of meridional circulation cells. There are a number of examples of remotely forced circulations in our main run. During the spring a northeastward countercurrent flows against the prevailing winds along the Somali coast north of 4°N, and from October through February a southwestward Somali Undercurrent is present from the tip of Somalia to 3°N; both of these flows result in part from forcing during the previous Southwest Monsoon. From March through May there is another southwestward Somali Undercurrent south of 7°N, generated primarily by the propagation of a Rossby wave from the west coast of India. The currents along the west coast of India are either strongly influenced or dominated by remote forcing from the Bay of Bengal throughout the year. A northeastward flow is well established along the east coast of India in March, long before the onset of the Southwest Monsoon; it is remotely forced either by upwelling-favorable, alongshore winds elsewhere within the Bay of Bengal or by negative wind curl in the western Bay. Finally, the Agulhas Current is strengthened considerably in a solution that includes throughflow from the Pacific Ocean. To investigate the relative importance of thermodynamic processes, we carried out a series of test calculations with various terms dropped from the Tm-equation. There is little effect on Tm when the sensible heat flux is set to zero, or when the solar radiation field is replaced by a spatially smoothed version. When temperature advection is deleted, Tm is most strongly affected near western boundaries since isotherms are no longer shifted there by the swift currents; the annual-mean, surface-heat-flux field Q is also changed, with Q becoming more positive (negative) to compensate for the absence of warm (cold) currents. Without entrainment cooling, Tm never cools during the summer in the intense upwelling regions in the northern ocean, and the annual-mean heat gain through the ocean surface (the area integral of Q over the basin) reverses to become a net heat loss. In individual tests without entrainment cooling, with Ta = Tm, and with qa set to 80% of its saturated value qs, model SST warms near the northern and southern boundaries during their respective winters by about 1°C, indicating that several processes contribute to wintertime cooling. The Tm field degrades considerably in a single test run with both Ta = Tm and qa = 0.8qs, so that one or the other of these external forcing fields is required to be able to simulate SST accurately. The annual-mean circulation has two meridional circulation cells. In the Tropical Cell, water subducts in the southern ocean, flows equatorward in the lower layer of the western-boundary current, and is entrained back into the upper layer in the open-ocean upwelling regions in the southern ocean. In the Cross-Equatorial Cell, the subducted water crosses the equator near the western boundary, where it is entrained in the regions of intense coastal upwelling in the northern ocean. The strength of the cells is directly related to the assumed magnitude of the subduction rate wd, but their structure is not sensitive to the particular parameterization of wd used." @default.
- W2017759254 created "2016-06-24" @default.
- W2017759254 creator A5036827636 @default.
- W2017759254 creator A5062793420 @default.
- W2017759254 creator A5073173674 @default.
- W2017759254 date "1993-01-01" @default.
- W2017759254 modified "2023-10-16" @default.
- W2017759254 title "A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean" @default.
- W2017759254 cites W1966605412 @default.
- W2017759254 cites W1971010350 @default.
- W2017759254 cites W1972936944 @default.
- W2017759254 cites W1973392253 @default.
- W2017759254 cites W1975929033 @default.
- W2017759254 cites W1976438910 @default.
- W2017759254 cites W1976714553 @default.
- W2017759254 cites W1978458111 @default.
- W2017759254 cites W1981661970 @default.
- W2017759254 cites W1981669700 @default.
- W2017759254 cites W1986134091 @default.
- W2017759254 cites W1987439427 @default.
- W2017759254 cites W1988737265 @default.
- W2017759254 cites W1997291184 @default.
- W2017759254 cites W1997409853 @default.
- W2017759254 cites W2001366574 @default.
- W2017759254 cites W2005085655 @default.
- W2017759254 cites W2016320504 @default.
- W2017759254 cites W2018679981 @default.
- W2017759254 cites W2025329026 @default.
- W2017759254 cites W2026447207 @default.
- W2017759254 cites W2026745039 @default.
- W2017759254 cites W2031445954 @default.
- W2017759254 cites W2039134472 @default.
- W2017759254 cites W2039519998 @default.
- W2017759254 cites W2040812703 @default.
- W2017759254 cites W2041071079 @default.
- W2017759254 cites W2049621442 @default.
- W2017759254 cites W2053773428 @default.
- W2017759254 cites W2053808731 @default.
- W2017759254 cites W2055374325 @default.
- W2017759254 cites W2055667679 @default.
- W2017759254 cites W2057178011 @default.
- W2017759254 cites W2058221234 @default.
- W2017759254 cites W2058754723 @default.
- W2017759254 cites W2061942651 @default.
- W2017759254 cites W2064475250 @default.
- W2017759254 cites W2064585704 @default.
- W2017759254 cites W2072700859 @default.
- W2017759254 cites W2078482914 @default.
- W2017759254 cites W2079517750 @default.
- W2017759254 cites W2082006261 @default.
- W2017759254 cites W2082145903 @default.
- W2017759254 cites W2083140860 @default.
- W2017759254 cites W2090285318 @default.
- W2017759254 cites W2092565546 @default.
- W2017759254 cites W2114614746 @default.
- W2017759254 cites W2115237463 @default.
- W2017759254 cites W2126410291 @default.
- W2017759254 cites W2152418738 @default.
- W2017759254 cites W2157325282 @default.
- W2017759254 cites W2157398013 @default.
- W2017759254 cites W2158610056 @default.
- W2017759254 cites W2163889698 @default.
- W2017759254 cites W2176957570 @default.
- W2017759254 cites W4230426780 @default.
- W2017759254 cites W4237631404 @default.
- W2017759254 doi "https://doi.org/10.1016/0079-6611(93)90002-u" @default.
- W2017759254 hasPublicationYear "1993" @default.
- W2017759254 type Work @default.
- W2017759254 sameAs 2017759254 @default.
- W2017759254 citedByCount "606" @default.
- W2017759254 countsByYear W20177592542012 @default.
- W2017759254 countsByYear W20177592542013 @default.
- W2017759254 countsByYear W20177592542014 @default.
- W2017759254 countsByYear W20177592542015 @default.
- W2017759254 countsByYear W20177592542016 @default.
- W2017759254 countsByYear W20177592542017 @default.
- W2017759254 countsByYear W20177592542018 @default.
- W2017759254 countsByYear W20177592542019 @default.
- W2017759254 countsByYear W20177592542020 @default.
- W2017759254 countsByYear W20177592542021 @default.
- W2017759254 countsByYear W20177592542022 @default.
- W2017759254 countsByYear W20177592542023 @default.
- W2017759254 crossrefType "journal-article" @default.
- W2017759254 hasAuthorship W2017759254A5036827636 @default.
- W2017759254 hasAuthorship W2017759254A5062793420 @default.
- W2017759254 hasAuthorship W2017759254A5073173674 @default.
- W2017759254 hasConcept C111368507 @default.
- W2017759254 hasConcept C121332964 @default.
- W2017759254 hasConcept C122120755 @default.
- W2017759254 hasConcept C127313418 @default.
- W2017759254 hasConcept C134097258 @default.
- W2017759254 hasConcept C135343436 @default.
- W2017759254 hasConcept C136996986 @default.
- W2017759254 hasConcept C138885662 @default.
- W2017759254 hasConcept C139992725 @default.
- W2017759254 hasConcept C197115733 @default.
- W2017759254 hasConcept C24890656 @default.
- W2017759254 hasConcept C2776831955 @default.