Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017761344> ?p ?o ?g. }
- W2017761344 endingPage "1122" @default.
- W2017761344 startingPage "1107" @default.
- W2017761344 abstract "The paper is an attempt to describe how neural networks may be used as an approximation–modelling tool. A brief survey of the evolution of the approximation theory and neural networks is presented. Practical applications are based on modelling of vacuum science problems, especially the modelling of a cold cathode pressure gauge. The problem of approximation of wide range functions, that are one of the characteristics of vacuum science problems, is introduced. Parameters such as pressure or cathode current span over several decades and neural networks are not suitable for any approximation of such functions; therefore, two strategies need to be introduced, and these are described. The approximation made by the neural network is obtained by the training process. The models obtained by several independent repetitions of training processes performed on the same training set lead to slightly different results. Therefore the definition of training stability is introduced and described. Finally, some practical hints regarding the neural network synthesis (design) are given." @default.
- W2017761344 created "2016-06-24" @default.
- W2017761344 creator A5065419864 @default.
- W2017761344 date "2006-08-01" @default.
- W2017761344 modified "2023-10-16" @default.
- W2017761344 title "Neural networks and modelling in vacuum science" @default.
- W2017761344 cites W110524478 @default.
- W2017761344 cites W1499865513 @default.
- W2017761344 cites W1529267578 @default.
- W2017761344 cites W1537963128 @default.
- W2017761344 cites W1966820249 @default.
- W2017761344 cites W1971735090 @default.
- W2017761344 cites W1971928003 @default.
- W2017761344 cites W1973787661 @default.
- W2017761344 cites W1975147165 @default.
- W2017761344 cites W1975543384 @default.
- W2017761344 cites W1978570435 @default.
- W2017761344 cites W1981041801 @default.
- W2017761344 cites W1983545343 @default.
- W2017761344 cites W1986605598 @default.
- W2017761344 cites W1987980016 @default.
- W2017761344 cites W1988115241 @default.
- W2017761344 cites W1988459307 @default.
- W2017761344 cites W1989302661 @default.
- W2017761344 cites W1997840417 @default.
- W2017761344 cites W2002412116 @default.
- W2017761344 cites W2003699104 @default.
- W2017761344 cites W2003986068 @default.
- W2017761344 cites W2005645564 @default.
- W2017761344 cites W2009566405 @default.
- W2017761344 cites W2009790961 @default.
- W2017761344 cites W2011534285 @default.
- W2017761344 cites W2013738709 @default.
- W2017761344 cites W2017162220 @default.
- W2017761344 cites W2018632140 @default.
- W2017761344 cites W2019411215 @default.
- W2017761344 cites W2022290342 @default.
- W2017761344 cites W2029124046 @default.
- W2017761344 cites W2032709405 @default.
- W2017761344 cites W2032912017 @default.
- W2017761344 cites W2033137841 @default.
- W2017761344 cites W2034797247 @default.
- W2017761344 cites W2034903716 @default.
- W2017761344 cites W2035572295 @default.
- W2017761344 cites W2036614784 @default.
- W2017761344 cites W2038716941 @default.
- W2017761344 cites W2038863003 @default.
- W2017761344 cites W2039333275 @default.
- W2017761344 cites W2042729862 @default.
- W2017761344 cites W2044618041 @default.
- W2017761344 cites W2044828368 @default.
- W2017761344 cites W2046284349 @default.
- W2017761344 cites W2046807928 @default.
- W2017761344 cites W2048268844 @default.
- W2017761344 cites W2058936835 @default.
- W2017761344 cites W2060224553 @default.
- W2017761344 cites W2064209160 @default.
- W2017761344 cites W2065224383 @default.
- W2017761344 cites W2069177061 @default.
- W2017761344 cites W2069409074 @default.
- W2017761344 cites W2070221455 @default.
- W2017761344 cites W2075936473 @default.
- W2017761344 cites W2076063638 @default.
- W2017761344 cites W2076835685 @default.
- W2017761344 cites W2080136178 @default.
- W2017761344 cites W2081970512 @default.
- W2017761344 cites W2090951562 @default.
- W2017761344 cites W2092144132 @default.
- W2017761344 cites W2095019963 @default.
- W2017761344 cites W2096252678 @default.
- W2017761344 cites W2096686362 @default.
- W2017761344 cites W2103496339 @default.
- W2017761344 cites W2108671543 @default.
- W2017761344 cites W2119953921 @default.
- W2017761344 cites W2137983211 @default.
- W2017761344 cites W2140026303 @default.
- W2017761344 cites W2151029520 @default.
- W2017761344 cites W2155853401 @default.
- W2017761344 cites W2156894267 @default.
- W2017761344 cites W2159387524 @default.
- W2017761344 cites W2166116275 @default.
- W2017761344 cites W2168420370 @default.
- W2017761344 cites W2171867284 @default.
- W2017761344 cites W2912753314 @default.
- W2017761344 cites W3125537303 @default.
- W2017761344 doi "https://doi.org/10.1016/j.vacuum.2006.02.017" @default.
- W2017761344 hasPublicationYear "2006" @default.
- W2017761344 type Work @default.
- W2017761344 sameAs 2017761344 @default.
- W2017761344 citedByCount "7" @default.
- W2017761344 countsByYear W20177613442012 @default.
- W2017761344 countsByYear W20177613442014 @default.
- W2017761344 countsByYear W20177613442016 @default.
- W2017761344 countsByYear W20177613442022 @default.
- W2017761344 crossrefType "journal-article" @default.
- W2017761344 hasAuthorship W2017761344A5065419864 @default.
- W2017761344 hasConcept C111919701 @default.
- W2017761344 hasConcept C112972136 @default.