Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017769895> ?p ?o ?g. }
- W2017769895 endingPage "100" @default.
- W2017769895 startingPage "89" @default.
- W2017769895 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 57:89-100 (2009) - DOI: https://doi.org/10.3354/ame01331 Microbial activities accompanying decomposition of cladoceran and copepod carcasses under different environmental conditions Kam W. Tang1,*, Samantha L. Bickel1, Claudia Dziallas2, Hans-Peter Grossart2 1Virginia Institute of Marine Science, 1208 Greate Road, Gloucester Point, Virginia 23062, USA 2Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, 16775 Stechlin, Germany *Email: kamtang@vims.edu ABSTRACT: Cladoceran and copepod carcasses in both marine and freshwater environments represent concentrated reservoirs of organic substrates for water column bacteria. We studied the microbial abundance, activities, and diversity associated with decomposing carcasses of different zooplankton species over short and long time scales, and in oligotrophic vs. eutrophic environments. Fresh carcasses of Daphnia cucullata, Diaphanosoma brachyurum, and Eudiaptomus gracilis were rapidly colonized by bacteria, which reached peak abundances within 1.5 d at 20°C and then decreased. Cell-specific exoenzymatic activity on protein and lipid analogs and production rate of bacteria associated with the carcasses were all higher than in the ambient water. ANOSIM analyses of DGGE banding patterns revealed that bacterial communities associated with both cladoceran and copepod carcasses rapidly diverged from the initial bacterial community in the ambient water. The high similarity of bacteria on both types of carcasses indicates that the carcasses were decomposed by similar bacterial groups. Estimated carcass decomposition rate was lower at 6°C, with an estimated Q10 of 2.4. Carcasses suspended in the eutrophic Lake Dagow had a higher average carbon loss rate than those suspended in the oligotrophic Lake Stechlin. Cladoceran carcasses were initially colonized by bacteria faster than copepod carcasses in both laboratory and field experiments, suggesting that cladoceran carcasses were more prone to exploitation by bacteria, yet copepod carcasses lost carbon at higher rates. Overall, our results suggest that pelagic zooplankton production can be directly converted to water column bacterial production via carcass decomposition, especially during the mid-summer zooplankton decline commonly observed in lakes. KEY WORDS: Decomposition · Exoenzymes · Bacterial production · Bacterial community composition · Zooplankton carcasses Full text in pdf format PreviousNextCite this article as: Tang KW, Bickel SL, Dziallas C, Grossart HP (2009) Microbial activities accompanying decomposition of cladoceran and copepod carcasses under different environmental conditions. Aquat Microb Ecol 57:89-100. https://doi.org/10.3354/ame01331 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 57, No. 1. Online publication date: September 18, 2009 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2009 Inter-Research." @default.
- W2017769895 created "2016-06-24" @default.
- W2017769895 creator A5009824517 @default.
- W2017769895 creator A5014387595 @default.
- W2017769895 creator A5048514503 @default.
- W2017769895 creator A5077964662 @default.
- W2017769895 date "2009-09-18" @default.
- W2017769895 modified "2023-09-27" @default.
- W2017769895 title "Microbial activities accompanying decomposition of cladoceran and copepod carcasses under different environmental conditions" @default.
- W2017769895 cites W1550549812 @default.
- W2017769895 cites W1965604972 @default.
- W2017769895 cites W1966034846 @default.
- W2017769895 cites W1967136876 @default.
- W2017769895 cites W1971707383 @default.
- W2017769895 cites W1973324265 @default.
- W2017769895 cites W1976880028 @default.
- W2017769895 cites W1977307235 @default.
- W2017769895 cites W1979835782 @default.
- W2017769895 cites W1986580580 @default.
- W2017769895 cites W1998996377 @default.
- W2017769895 cites W2001104614 @default.
- W2017769895 cites W2009346363 @default.
- W2017769895 cites W2012386300 @default.
- W2017769895 cites W2016827464 @default.
- W2017769895 cites W2020026561 @default.
- W2017769895 cites W2023223296 @default.
- W2017769895 cites W2025150213 @default.
- W2017769895 cites W2027608343 @default.
- W2017769895 cites W2028738304 @default.
- W2017769895 cites W2030427413 @default.
- W2017769895 cites W2036364641 @default.
- W2017769895 cites W2038215984 @default.
- W2017769895 cites W2039624129 @default.
- W2017769895 cites W2044424901 @default.
- W2017769895 cites W2049303692 @default.
- W2017769895 cites W2049336201 @default.
- W2017769895 cites W2051008590 @default.
- W2017769895 cites W2054315609 @default.
- W2017769895 cites W2055918869 @default.
- W2017769895 cites W2056467812 @default.
- W2017769895 cites W2057406157 @default.
- W2017769895 cites W2058203127 @default.
- W2017769895 cites W2073399569 @default.
- W2017769895 cites W2076697662 @default.
- W2017769895 cites W2102544062 @default.
- W2017769895 cites W2103016256 @default.
- W2017769895 cites W2104716479 @default.
- W2017769895 cites W2115244066 @default.
- W2017769895 cites W2119045984 @default.
- W2017769895 cites W2122540195 @default.
- W2017769895 cites W2123931247 @default.
- W2017769895 cites W2124205963 @default.
- W2017769895 cites W2125257183 @default.
- W2017769895 cites W2136223765 @default.
- W2017769895 cites W2155363924 @default.
- W2017769895 cites W2162522205 @default.
- W2017769895 cites W2169902378 @default.
- W2017769895 cites W2495655751 @default.
- W2017769895 doi "https://doi.org/10.3354/ame01331" @default.
- W2017769895 hasPublicationYear "2009" @default.
- W2017769895 type Work @default.
- W2017769895 sameAs 2017769895 @default.
- W2017769895 citedByCount "47" @default.
- W2017769895 countsByYear W20177698952012 @default.
- W2017769895 countsByYear W20177698952013 @default.
- W2017769895 countsByYear W20177698952014 @default.
- W2017769895 countsByYear W20177698952015 @default.
- W2017769895 countsByYear W20177698952016 @default.
- W2017769895 countsByYear W20177698952017 @default.
- W2017769895 countsByYear W20177698952018 @default.
- W2017769895 countsByYear W20177698952019 @default.
- W2017769895 countsByYear W20177698952020 @default.
- W2017769895 countsByYear W20177698952021 @default.
- W2017769895 countsByYear W20177698952022 @default.
- W2017769895 crossrefType "journal-article" @default.
- W2017769895 hasAuthorship W2017769895A5009824517 @default.
- W2017769895 hasAuthorship W2017769895A5014387595 @default.
- W2017769895 hasAuthorship W2017769895A5048514503 @default.
- W2017769895 hasAuthorship W2017769895A5077964662 @default.
- W2017769895 hasBestOaLocation W20177698951 @default.
- W2017769895 hasConcept C122846477 @default.
- W2017769895 hasConcept C158836135 @default.
- W2017769895 hasConcept C18903297 @default.
- W2017769895 hasConcept C2777235683 @default.
- W2017769895 hasConcept C2778208666 @default.
- W2017769895 hasConcept C77077793 @default.
- W2017769895 hasConcept C84766238 @default.
- W2017769895 hasConcept C86803240 @default.
- W2017769895 hasConcept C90856448 @default.
- W2017769895 hasConceptScore W2017769895C122846477 @default.
- W2017769895 hasConceptScore W2017769895C158836135 @default.
- W2017769895 hasConceptScore W2017769895C18903297 @default.
- W2017769895 hasConceptScore W2017769895C2777235683 @default.
- W2017769895 hasConceptScore W2017769895C2778208666 @default.
- W2017769895 hasConceptScore W2017769895C77077793 @default.
- W2017769895 hasConceptScore W2017769895C84766238 @default.
- W2017769895 hasConceptScore W2017769895C86803240 @default.
- W2017769895 hasConceptScore W2017769895C90856448 @default.