Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017774864> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2017774864 abstract "During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage." @default.
- W2017774864 created "2016-06-24" @default.
- W2017774864 creator A5027292126 @default.
- W2017774864 creator A5065870555 @default.
- W2017774864 creator A5083849661 @default.
- W2017774864 date "2015-03-20" @default.
- W2017774864 modified "2023-09-23" @default.
- W2017774864 title "3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation" @default.
- W2017774864 cites W2034102777 @default.
- W2017774864 cites W2038952578 @default.
- W2017774864 cites W2104276184 @default.
- W2017774864 cites W2153431772 @default.
- W2017774864 cites W2164598857 @default.
- W2017774864 cites W4244441399 @default.
- W2017774864 doi "https://doi.org/10.1117/12.2082909" @default.
- W2017774864 hasPublicationYear "2015" @default.
- W2017774864 type Work @default.
- W2017774864 sameAs 2017774864 @default.
- W2017774864 citedByCount "4" @default.
- W2017774864 countsByYear W20177748642016 @default.
- W2017774864 countsByYear W20177748642017 @default.
- W2017774864 countsByYear W20177748642021 @default.
- W2017774864 crossrefType "proceedings-article" @default.
- W2017774864 hasAuthorship W2017774864A5027292126 @default.
- W2017774864 hasAuthorship W2017774864A5065870555 @default.
- W2017774864 hasAuthorship W2017774864A5083849661 @default.
- W2017774864 hasConcept C10138342 @default.
- W2017774864 hasConcept C104317684 @default.
- W2017774864 hasConcept C124504099 @default.
- W2017774864 hasConcept C153180895 @default.
- W2017774864 hasConcept C154945302 @default.
- W2017774864 hasConcept C162324750 @default.
- W2017774864 hasConcept C169258074 @default.
- W2017774864 hasConcept C185592680 @default.
- W2017774864 hasConcept C198082294 @default.
- W2017774864 hasConcept C2780297707 @default.
- W2017774864 hasConcept C31972630 @default.
- W2017774864 hasConcept C41008148 @default.
- W2017774864 hasConcept C55493867 @default.
- W2017774864 hasConcept C63479239 @default.
- W2017774864 hasConcept C89600930 @default.
- W2017774864 hasConceptScore W2017774864C10138342 @default.
- W2017774864 hasConceptScore W2017774864C104317684 @default.
- W2017774864 hasConceptScore W2017774864C124504099 @default.
- W2017774864 hasConceptScore W2017774864C153180895 @default.
- W2017774864 hasConceptScore W2017774864C154945302 @default.
- W2017774864 hasConceptScore W2017774864C162324750 @default.
- W2017774864 hasConceptScore W2017774864C169258074 @default.
- W2017774864 hasConceptScore W2017774864C185592680 @default.
- W2017774864 hasConceptScore W2017774864C198082294 @default.
- W2017774864 hasConceptScore W2017774864C2780297707 @default.
- W2017774864 hasConceptScore W2017774864C31972630 @default.
- W2017774864 hasConceptScore W2017774864C41008148 @default.
- W2017774864 hasConceptScore W2017774864C55493867 @default.
- W2017774864 hasConceptScore W2017774864C63479239 @default.
- W2017774864 hasConceptScore W2017774864C89600930 @default.
- W2017774864 hasLocation W20177748641 @default.
- W2017774864 hasOpenAccess W2017774864 @default.
- W2017774864 hasPrimaryLocation W20177748641 @default.
- W2017774864 hasRelatedWork W1589172999 @default.
- W2017774864 hasRelatedWork W1835776286 @default.
- W2017774864 hasRelatedWork W1975329551 @default.
- W2017774864 hasRelatedWork W1996819593 @default.
- W2017774864 hasRelatedWork W2015497137 @default.
- W2017774864 hasRelatedWork W2036188537 @default.
- W2017774864 hasRelatedWork W2076209337 @default.
- W2017774864 hasRelatedWork W2102331633 @default.
- W2017774864 hasRelatedWork W2106645822 @default.
- W2017774864 hasRelatedWork W2115374002 @default.
- W2017774864 hasRelatedWork W2119371013 @default.
- W2017774864 hasRelatedWork W2123225824 @default.
- W2017774864 hasRelatedWork W2123827229 @default.
- W2017774864 hasRelatedWork W2155331885 @default.
- W2017774864 hasRelatedWork W2172532449 @default.
- W2017774864 hasRelatedWork W2346913462 @default.
- W2017774864 hasRelatedWork W2574111200 @default.
- W2017774864 hasRelatedWork W2606797870 @default.
- W2017774864 hasRelatedWork W2886960402 @default.
- W2017774864 hasRelatedWork W3135376296 @default.
- W2017774864 isParatext "false" @default.
- W2017774864 isRetracted "false" @default.
- W2017774864 magId "2017774864" @default.
- W2017774864 workType "article" @default.