Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017776273> ?p ?o ?g. }
- W2017776273 endingPage "14463" @default.
- W2017776273 startingPage "14452" @default.
- W2017776273 abstract "We measured gluconeogenesis (GNG) in rats by mass isotopomer distribution analysis, which allows enrichment of the true biosynthetic precursor pool (hepatic cytosolic triose phosphates) to be determined. Fractional GNG from infused [3-13C]lactate, [1-13C]lactate, and [2-13C]glycerol was 88 ± 2, 89 ± 3, and 87 ± 2%, respectively, after 48 h of fasting. [2-13C]Glycerol was the most efficient label and allowed measurement of rate of appearance of intrahepatic triose phosphate (Ra triose-P), by dilution. IV fructose (10-15 mg/kg/min) increased absolute GNG by 81-147%. Ra triose-P increased proportionately, but endogenous Ra triose-P was almost completely suppressed, suggesting feedback control. Interestingly, 15-17% of fructose was directly converted to glucose without entering hepatic triose-P. IV glucose reduced GNG and Ra triose-P. 24-h fasting reduced hepatic glucose production by half, but absolute GNG was unchanged due to increased fractional GNG (51-87%). Reduced hepatic glucose production was entirely due to decreased glycogen input, from 7.3 ± 1.8 to 1.1 ± 0.2 mg/kg/min. Ra triose-P fell during fasting, but efficiency of triose-P disposal into GNG increased, maintaining GNG constant. Secreted glucuronyl conjugates and plasma glucose results correlated closely. In summary, GNG and intrahepatic triose-P flux can be measured by mass isotopomer distribution analysis with [2-13C]glycerol. We measured gluconeogenesis (GNG) in rats by mass isotopomer distribution analysis, which allows enrichment of the true biosynthetic precursor pool (hepatic cytosolic triose phosphates) to be determined. Fractional GNG from infused [3-13C]lactate, [1-13C]lactate, and [2-13C]glycerol was 88 ± 2, 89 ± 3, and 87 ± 2%, respectively, after 48 h of fasting. [2-13C]Glycerol was the most efficient label and allowed measurement of rate of appearance of intrahepatic triose phosphate (Ra triose-P), by dilution. IV fructose (10-15 mg/kg/min) increased absolute GNG by 81-147%. Ra triose-P increased proportionately, but endogenous Ra triose-P was almost completely suppressed, suggesting feedback control. Interestingly, 15-17% of fructose was directly converted to glucose without entering hepatic triose-P. IV glucose reduced GNG and Ra triose-P. 24-h fasting reduced hepatic glucose production by half, but absolute GNG was unchanged due to increased fractional GNG (51-87%). Reduced hepatic glucose production was entirely due to decreased glycogen input, from 7.3 ± 1.8 to 1.1 ± 0.2 mg/kg/min. Ra triose-P fell during fasting, but efficiency of triose-P disposal into GNG increased, maintaining GNG constant. Secreted glucuronyl conjugates and plasma glucose results correlated closely. In summary, GNG and intrahepatic triose-P flux can be measured by mass isotopomer distribution analysis with [2-13C]glycerol." @default.
- W2017776273 created "2016-06-24" @default.
- W2017776273 creator A5006806004 @default.
- W2017776273 creator A5014347604 @default.
- W2017776273 creator A5014393890 @default.
- W2017776273 creator A5015608912 @default.
- W2017776273 creator A5047114493 @default.
- W2017776273 creator A5051436469 @default.
- W2017776273 creator A5076893457 @default.
- W2017776273 date "1995-06-01" @default.
- W2017776273 modified "2023-10-16" @default.
- W2017776273 title "Gluconeogenesis and Intrahepatic Triose Phosphate Flux in Response to Fasting or Substrate Loads. APPLICATION OF THE MASS ISOTOPOMER DISTRIBUTION ANALYSIS TECHNIQUE WITH TESTING OF ASSUMPTIONS AND POTENTIAL PROBLEMS" @default.
- W2017776273 cites W14139315 @default.
- W2017776273 cites W1493720978 @default.
- W2017776273 cites W1496435773 @default.
- W2017776273 cites W1526998224 @default.
- W2017776273 cites W1553898431 @default.
- W2017776273 cites W1572846506 @default.
- W2017776273 cites W1773263217 @default.
- W2017776273 cites W1872299230 @default.
- W2017776273 cites W1969012866 @default.
- W2017776273 cites W1978749443 @default.
- W2017776273 cites W1997948779 @default.
- W2017776273 cites W2003426638 @default.
- W2017776273 cites W2015215410 @default.
- W2017776273 cites W2019085305 @default.
- W2017776273 cites W2023137971 @default.
- W2017776273 cites W2027667229 @default.
- W2017776273 cites W2035649591 @default.
- W2017776273 cites W2039721323 @default.
- W2017776273 cites W2044863407 @default.
- W2017776273 cites W2074789422 @default.
- W2017776273 cites W2076433657 @default.
- W2017776273 cites W2084247271 @default.
- W2017776273 cites W2085665305 @default.
- W2017776273 cites W2089719706 @default.
- W2017776273 cites W2099563100 @default.
- W2017776273 cites W2105736904 @default.
- W2017776273 cites W2113048216 @default.
- W2017776273 cites W2129224957 @default.
- W2017776273 cites W2134212766 @default.
- W2017776273 cites W2150505189 @default.
- W2017776273 cites W2160384513 @default.
- W2017776273 cites W2171169214 @default.
- W2017776273 cites W2185978751 @default.
- W2017776273 cites W2258303525 @default.
- W2017776273 cites W2287671349 @default.
- W2017776273 cites W2304472093 @default.
- W2017776273 cites W276326461 @default.
- W2017776273 cites W53266581 @default.
- W2017776273 doi "https://doi.org/10.1074/jbc.270.24.14452" @default.
- W2017776273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7782307" @default.
- W2017776273 hasPublicationYear "1995" @default.
- W2017776273 type Work @default.
- W2017776273 sameAs 2017776273 @default.
- W2017776273 citedByCount "119" @default.
- W2017776273 countsByYear W20177762732013 @default.
- W2017776273 countsByYear W20177762732014 @default.
- W2017776273 countsByYear W20177762732015 @default.
- W2017776273 countsByYear W20177762732016 @default.
- W2017776273 countsByYear W20177762732017 @default.
- W2017776273 countsByYear W20177762732019 @default.
- W2017776273 countsByYear W20177762732020 @default.
- W2017776273 countsByYear W20177762732021 @default.
- W2017776273 countsByYear W20177762732022 @default.
- W2017776273 countsByYear W20177762732023 @default.
- W2017776273 crossrefType "journal-article" @default.
- W2017776273 hasAuthorship W2017776273A5006806004 @default.
- W2017776273 hasAuthorship W2017776273A5014347604 @default.
- W2017776273 hasAuthorship W2017776273A5014393890 @default.
- W2017776273 hasAuthorship W2017776273A5015608912 @default.
- W2017776273 hasAuthorship W2017776273A5047114493 @default.
- W2017776273 hasAuthorship W2017776273A5051436469 @default.
- W2017776273 hasAuthorship W2017776273A5076893457 @default.
- W2017776273 hasBestOaLocation W20177762731 @default.
- W2017776273 hasConcept C126322002 @default.
- W2017776273 hasConcept C127124265 @default.
- W2017776273 hasConcept C134018914 @default.
- W2017776273 hasConcept C178790620 @default.
- W2017776273 hasConcept C185592680 @default.
- W2017776273 hasConcept C20904676 @default.
- W2017776273 hasConcept C2776970464 @default.
- W2017776273 hasConcept C2778977261 @default.
- W2017776273 hasConcept C2780881558 @default.
- W2017776273 hasConcept C32909587 @default.
- W2017776273 hasConcept C55493867 @default.
- W2017776273 hasConcept C62231903 @default.
- W2017776273 hasConcept C71924100 @default.
- W2017776273 hasConcept C86803240 @default.
- W2017776273 hasConceptScore W2017776273C126322002 @default.
- W2017776273 hasConceptScore W2017776273C127124265 @default.
- W2017776273 hasConceptScore W2017776273C134018914 @default.
- W2017776273 hasConceptScore W2017776273C178790620 @default.
- W2017776273 hasConceptScore W2017776273C185592680 @default.
- W2017776273 hasConceptScore W2017776273C20904676 @default.
- W2017776273 hasConceptScore W2017776273C2776970464 @default.
- W2017776273 hasConceptScore W2017776273C2778977261 @default.
- W2017776273 hasConceptScore W2017776273C2780881558 @default.