Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017796714> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2017796714 endingPage "215" @default.
- W2017796714 startingPage "203" @default.
- W2017796714 abstract "In this paper, based on the functional elements derived from non-redundant CDs catalogue, we show that the configuration of functional groups in meta-genome samples can be inferred by probabilistic topic modeling. The probabilistic topic modeling is a Bayesian method that is able to extract useful topical information from unlabeled data. When used to study microbial samples (assuming that relative abundance of functional elements is already obtained by a homology-based approach), each sample can be considered as a “document,” which has a mixture of functional groups, while each functional group (also known as a “latent topic”) is a weight mixture of functional elements (including taxonomic levels, and indicators of gene orthologous groups and KEGG pathway mappings). The functional elements bear an analogy with “words.” Estimating the probabilistic topic model can uncover the configuration of functional groups (the latent topic) in each sample. The experimental results demonstrate the effectiveness of our proposed method." @default.
- W2017796714 created "2016-06-24" @default.
- W2017796714 creator A5025167129 @default.
- W2017796714 creator A5028462736 @default.
- W2017796714 creator A5039602194 @default.
- W2017796714 creator A5040924293 @default.
- W2017796714 creator A5076563235 @default.
- W2017796714 creator A5080738591 @default.
- W2017796714 date "2012-09-01" @default.
- W2017796714 modified "2023-10-05" @default.
- W2017796714 title "Estimating Functional Groups in Human Gut Microbiome With Probabilistic Topic Models" @default.
- W2017796714 cites W1530498595 @default.
- W2017796714 cites W2001082470 @default.
- W2017796714 cites W2004192158 @default.
- W2017796714 cites W2021497754 @default.
- W2017796714 cites W2024372253 @default.
- W2017796714 cites W2125826054 @default.
- W2017796714 cites W2127660113 @default.
- W2017796714 cites W2142379151 @default.
- W2017796714 cites W2156145269 @default.
- W2017796714 cites W2158266063 @default.
- W2017796714 cites W2171353991 @default.
- W2017796714 cites W2522771732 @default.
- W2017796714 cites W2587557602 @default.
- W2017796714 cites W4237791300 @default.
- W2017796714 doi "https://doi.org/10.1109/tnb.2012.2212204" @default.
- W2017796714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22987126" @default.
- W2017796714 hasPublicationYear "2012" @default.
- W2017796714 type Work @default.
- W2017796714 sameAs 2017796714 @default.
- W2017796714 citedByCount "10" @default.
- W2017796714 countsByYear W20177967142016 @default.
- W2017796714 countsByYear W20177967142017 @default.
- W2017796714 countsByYear W20177967142018 @default.
- W2017796714 countsByYear W20177967142020 @default.
- W2017796714 countsByYear W20177967142021 @default.
- W2017796714 countsByYear W20177967142022 @default.
- W2017796714 crossrefType "journal-article" @default.
- W2017796714 hasAuthorship W2017796714A5025167129 @default.
- W2017796714 hasAuthorship W2017796714A5028462736 @default.
- W2017796714 hasAuthorship W2017796714A5039602194 @default.
- W2017796714 hasAuthorship W2017796714A5040924293 @default.
- W2017796714 hasAuthorship W2017796714A5076563235 @default.
- W2017796714 hasAuthorship W2017796714A5080738591 @default.
- W2017796714 hasConcept C104317684 @default.
- W2017796714 hasConcept C107673813 @default.
- W2017796714 hasConcept C119857082 @default.
- W2017796714 hasConcept C124101348 @default.
- W2017796714 hasConcept C150194340 @default.
- W2017796714 hasConcept C15151743 @default.
- W2017796714 hasConcept C152724338 @default.
- W2017796714 hasConcept C154945302 @default.
- W2017796714 hasConcept C2987395477 @default.
- W2017796714 hasConcept C41008148 @default.
- W2017796714 hasConcept C49937458 @default.
- W2017796714 hasConcept C54355233 @default.
- W2017796714 hasConcept C70721500 @default.
- W2017796714 hasConcept C86803240 @default.
- W2017796714 hasConceptScore W2017796714C104317684 @default.
- W2017796714 hasConceptScore W2017796714C107673813 @default.
- W2017796714 hasConceptScore W2017796714C119857082 @default.
- W2017796714 hasConceptScore W2017796714C124101348 @default.
- W2017796714 hasConceptScore W2017796714C150194340 @default.
- W2017796714 hasConceptScore W2017796714C15151743 @default.
- W2017796714 hasConceptScore W2017796714C152724338 @default.
- W2017796714 hasConceptScore W2017796714C154945302 @default.
- W2017796714 hasConceptScore W2017796714C2987395477 @default.
- W2017796714 hasConceptScore W2017796714C41008148 @default.
- W2017796714 hasConceptScore W2017796714C49937458 @default.
- W2017796714 hasConceptScore W2017796714C54355233 @default.
- W2017796714 hasConceptScore W2017796714C70721500 @default.
- W2017796714 hasConceptScore W2017796714C86803240 @default.
- W2017796714 hasIssue "3" @default.
- W2017796714 hasLocation W20177967141 @default.
- W2017796714 hasLocation W20177967142 @default.
- W2017796714 hasOpenAccess W2017796714 @default.
- W2017796714 hasPrimaryLocation W20177967141 @default.
- W2017796714 hasRelatedWork W1501213224 @default.
- W2017796714 hasRelatedWork W2233705203 @default.
- W2017796714 hasRelatedWork W2260144803 @default.
- W2017796714 hasRelatedWork W2336636687 @default.
- W2017796714 hasRelatedWork W2538669636 @default.
- W2017796714 hasRelatedWork W2898311014 @default.
- W2017796714 hasRelatedWork W4221094432 @default.
- W2017796714 hasRelatedWork W4245358574 @default.
- W2017796714 hasRelatedWork W4255058348 @default.
- W2017796714 hasRelatedWork W4366770894 @default.
- W2017796714 hasVolume "11" @default.
- W2017796714 isParatext "false" @default.
- W2017796714 isRetracted "false" @default.
- W2017796714 magId "2017796714" @default.
- W2017796714 workType "article" @default.