Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017798485> ?p ?o ?g. }
- W2017798485 endingPage "671" @default.
- W2017798485 startingPage "657" @default.
- W2017798485 abstract "Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype comprises a temporal model that explains fMRI signals on a single voxel and the model's region of influence through a spatial prior over the voxel space. As the key ingredient of our temporal model, the Hidden Process Model (HPM) framework proposed in Hutchinson et al. (2009) is adopted to infer the overlapping cognitive processes triggered by stimuli. Unlike the original HPM framework, we use a parametric model of Haemodynamic Response Function (HRF) so that biological constraints are naturally incorporated in the HRF estimation. The spatial priors are defined in terms of a parameterised distribution. Thus, the total number of parameters in the model does not depend on the number of voxels. The resulting model provides a conceptually principled and computationally efficient approach to identify spatio-temporal patterns of neural activation from fMRI data, in contrast to most conventional approaches in the literature focusing on the detection of spatial patterns. We first verify the proposed model in a controlled experimental setting using synthetic data. The model is further validated on real fMRI data obtained from a rapid event-related visual recognition experiment (Mayhew et al., 2012). Our model enables us to evaluate in a principled manner the variability of neural activations within individual regions of interest (ROIs). The results strongly suggest that, compared with occipitotemporal regions, the frontal ones are less homogeneous, requiring two HPM prototypes per region. Despite the rapid event-related experimental design, the model is capable of disentangling the perceptual judgement and motor response processes that are both activated in the frontal ROIs. Spatio-temporal heterogeneity in the frontal regions seems to be associated with diverse dynamic localizations of the two hidden processes in different subregions of frontal ROIs." @default.
- W2017798485 created "2016-06-24" @default.
- W2017798485 creator A5014763831 @default.
- W2017798485 creator A5051182859 @default.
- W2017798485 creator A5052022779 @default.
- W2017798485 creator A5054960040 @default.
- W2017798485 date "2014-01-01" @default.
- W2017798485 modified "2023-10-18" @default.
- W2017798485 title "Spatial–temporal modelling of fMRI data through spatially regularized mixture of hidden process models" @default.
- W2017798485 cites W1979391617 @default.
- W2017798485 cites W1991237518 @default.
- W2017798485 cites W1994454049 @default.
- W2017798485 cites W1994494207 @default.
- W2017798485 cites W1994729928 @default.
- W2017798485 cites W1999209819 @default.
- W2017798485 cites W2000499520 @default.
- W2017798485 cites W2002696228 @default.
- W2017798485 cites W2006493416 @default.
- W2017798485 cites W2008402640 @default.
- W2017798485 cites W2013466093 @default.
- W2017798485 cites W2016634887 @default.
- W2017798485 cites W2022891107 @default.
- W2017798485 cites W2025283285 @default.
- W2017798485 cites W2031504445 @default.
- W2017798485 cites W2032282107 @default.
- W2017798485 cites W2032849626 @default.
- W2017798485 cites W2040363881 @default.
- W2017798485 cites W2041884326 @default.
- W2017798485 cites W2043686249 @default.
- W2017798485 cites W2046807932 @default.
- W2017798485 cites W2057217342 @default.
- W2017798485 cites W2059982399 @default.
- W2017798485 cites W2064563223 @default.
- W2017798485 cites W2067763719 @default.
- W2017798485 cites W2071714163 @default.
- W2017798485 cites W2083408384 @default.
- W2017798485 cites W2088272457 @default.
- W2017798485 cites W2102669877 @default.
- W2017798485 cites W2106773151 @default.
- W2017798485 cites W2111423163 @default.
- W2017798485 cites W2111609296 @default.
- W2017798485 cites W2114759290 @default.
- W2017798485 cites W2115450036 @default.
- W2017798485 cites W2117663940 @default.
- W2017798485 cites W2119590262 @default.
- W2017798485 cites W2124017673 @default.
- W2017798485 cites W2125727363 @default.
- W2017798485 cites W2129066856 @default.
- W2017798485 cites W2131481495 @default.
- W2017798485 cites W2139376466 @default.
- W2017798485 cites W2166322089 @default.
- W2017798485 cites W2171569342 @default.
- W2017798485 cites W4231971047 @default.
- W2017798485 doi "https://doi.org/10.1016/j.neuroimage.2013.09.003" @default.
- W2017798485 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4066951" @default.
- W2017798485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24041873" @default.
- W2017798485 hasPublicationYear "2014" @default.
- W2017798485 type Work @default.
- W2017798485 sameAs 2017798485 @default.
- W2017798485 citedByCount "10" @default.
- W2017798485 countsByYear W20177984852014 @default.
- W2017798485 countsByYear W20177984852016 @default.
- W2017798485 countsByYear W20177984852018 @default.
- W2017798485 countsByYear W20177984852020 @default.
- W2017798485 countsByYear W20177984852021 @default.
- W2017798485 countsByYear W20177984852022 @default.
- W2017798485 crossrefType "journal-article" @default.
- W2017798485 hasAuthorship W2017798485A5014763831 @default.
- W2017798485 hasAuthorship W2017798485A5051182859 @default.
- W2017798485 hasAuthorship W2017798485A5052022779 @default.
- W2017798485 hasAuthorship W2017798485A5054960040 @default.
- W2017798485 hasBestOaLocation W20177984851 @default.
- W2017798485 hasConcept C105795698 @default.
- W2017798485 hasConcept C107673813 @default.
- W2017798485 hasConcept C117251300 @default.
- W2017798485 hasConcept C119857082 @default.
- W2017798485 hasConcept C153180895 @default.
- W2017798485 hasConcept C154945302 @default.
- W2017798485 hasConcept C160920958 @default.
- W2017798485 hasConcept C177769412 @default.
- W2017798485 hasConcept C33923547 @default.
- W2017798485 hasConcept C41008148 @default.
- W2017798485 hasConcept C49937458 @default.
- W2017798485 hasConcept C54170458 @default.
- W2017798485 hasConceptScore W2017798485C105795698 @default.
- W2017798485 hasConceptScore W2017798485C107673813 @default.
- W2017798485 hasConceptScore W2017798485C117251300 @default.
- W2017798485 hasConceptScore W2017798485C119857082 @default.
- W2017798485 hasConceptScore W2017798485C153180895 @default.
- W2017798485 hasConceptScore W2017798485C154945302 @default.
- W2017798485 hasConceptScore W2017798485C160920958 @default.
- W2017798485 hasConceptScore W2017798485C177769412 @default.
- W2017798485 hasConceptScore W2017798485C33923547 @default.
- W2017798485 hasConceptScore W2017798485C41008148 @default.
- W2017798485 hasConceptScore W2017798485C49937458 @default.
- W2017798485 hasConceptScore W2017798485C54170458 @default.
- W2017798485 hasFunder F4320334629 @default.
- W2017798485 hasLocation W20177984851 @default.