Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017803656> ?p ?o ?g. }
- W2017803656 endingPage "176" @default.
- W2017803656 startingPage "164" @default.
- W2017803656 abstract "Although there are many industrial machines used in marble industry, classification of marble slabs in terms of quality is generally performed by human experts. Due to economic losses of this rather subjective process, automatic and computerized methods are needed in order to obtain reproducible and objective results in classification. With the aim of remedying this insufficiency in marble industry, a new electro-mechanical system, which automatically classifies marble slabs while they are on a conveyor belt and groups them with the help of a control mechanism, is proposed. The developed system is composed of two parts: the software part acquires digital images of marble slabs, extracts several features using these images, and finally performs the classification using clustering methods. The hardware part is composed of a conveyor belt, a serial port communication system, pneumatic pistons, a programmable logic controller (PLC), and its control circuits, all employed together for grouping the marble slabs mechanically. Although similar studies exist, this paper proposes three novelties over the existing systems. Firstly, a new hierarchical clustering approach is introduced for quality classification without requiring a training set. Secondly, a new feature set based on morphological properties of marble surface images is proposed. Finally, an electro-mechanical system is designed for accomplishing the task of sorting out the classified marble slabs. In the literature, only a system with a labeling mechanism has been presented. Our system, on the other hand, comes with a complete conveyor belt acting as an element that links the production line with the proposed system. This allows the possibility of embedding the proposed system into the production line of a marble factory. It has been observed that although the performance of the developed system is not as high as neural network based systems that use training, it could still be employed in industry when there is no available training set of samples. With this advantage, it provides an increase in the quality control standards of marble slab classification, since marbles are classified with an objective and uniform-through-time criterion." @default.
- W2017803656 created "2016-06-24" @default.
- W2017803656 creator A5005201848 @default.
- W2017803656 creator A5006268794 @default.
- W2017803656 creator A5071792338 @default.
- W2017803656 creator A5074345395 @default.
- W2017803656 creator A5088267463 @default.
- W2017803656 date "2011-02-01" @default.
- W2017803656 modified "2023-09-30" @default.
- W2017803656 title "An automated industrial conveyor belt system using image processing and hierarchical clustering for classifying marble slabs" @default.
- W2017803656 cites W1991141435 @default.
- W2017803656 cites W2000751378 @default.
- W2017803656 cites W2004313226 @default.
- W2017803656 cites W2004873221 @default.
- W2017803656 cites W2021205336 @default.
- W2017803656 cites W2026445526 @default.
- W2017803656 cites W2033769372 @default.
- W2017803656 cites W2040002936 @default.
- W2017803656 cites W2050195648 @default.
- W2017803656 cites W2078647155 @default.
- W2017803656 cites W2080964655 @default.
- W2017803656 cites W2086224960 @default.
- W2017803656 cites W2089468765 @default.
- W2017803656 cites W2091250708 @default.
- W2017803656 cites W2119863960 @default.
- W2017803656 cites W2136318045 @default.
- W2017803656 cites W2139656130 @default.
- W2017803656 cites W2306898030 @default.
- W2017803656 doi "https://doi.org/10.1016/j.rcim.2010.07.004" @default.
- W2017803656 hasPublicationYear "2011" @default.
- W2017803656 type Work @default.
- W2017803656 sameAs 2017803656 @default.
- W2017803656 citedByCount "39" @default.
- W2017803656 countsByYear W20178036562013 @default.
- W2017803656 countsByYear W20178036562014 @default.
- W2017803656 countsByYear W20178036562015 @default.
- W2017803656 countsByYear W20178036562016 @default.
- W2017803656 countsByYear W20178036562017 @default.
- W2017803656 countsByYear W20178036562018 @default.
- W2017803656 countsByYear W20178036562020 @default.
- W2017803656 countsByYear W20178036562021 @default.
- W2017803656 countsByYear W20178036562022 @default.
- W2017803656 countsByYear W20178036562023 @default.
- W2017803656 crossrefType "journal-article" @default.
- W2017803656 hasAuthorship W2017803656A5005201848 @default.
- W2017803656 hasAuthorship W2017803656A5006268794 @default.
- W2017803656 hasAuthorship W2017803656A5071792338 @default.
- W2017803656 hasAuthorship W2017803656A5074345395 @default.
- W2017803656 hasAuthorship W2017803656A5088267463 @default.
- W2017803656 hasConcept C111696304 @default.
- W2017803656 hasConcept C111919701 @default.
- W2017803656 hasConcept C11413529 @default.
- W2017803656 hasConcept C115961682 @default.
- W2017803656 hasConcept C127413603 @default.
- W2017803656 hasConcept C153180895 @default.
- W2017803656 hasConcept C154945302 @default.
- W2017803656 hasConcept C177264268 @default.
- W2017803656 hasConcept C199360897 @default.
- W2017803656 hasConcept C203479927 @default.
- W2017803656 hasConcept C2777709985 @default.
- W2017803656 hasConcept C2777904410 @default.
- W2017803656 hasConcept C41008148 @default.
- W2017803656 hasConcept C6557445 @default.
- W2017803656 hasConcept C73555534 @default.
- W2017803656 hasConcept C78519656 @default.
- W2017803656 hasConcept C86803240 @default.
- W2017803656 hasConcept C92835128 @default.
- W2017803656 hasConcept C9417928 @default.
- W2017803656 hasConcept C98045186 @default.
- W2017803656 hasConceptScore W2017803656C111696304 @default.
- W2017803656 hasConceptScore W2017803656C111919701 @default.
- W2017803656 hasConceptScore W2017803656C11413529 @default.
- W2017803656 hasConceptScore W2017803656C115961682 @default.
- W2017803656 hasConceptScore W2017803656C127413603 @default.
- W2017803656 hasConceptScore W2017803656C153180895 @default.
- W2017803656 hasConceptScore W2017803656C154945302 @default.
- W2017803656 hasConceptScore W2017803656C177264268 @default.
- W2017803656 hasConceptScore W2017803656C199360897 @default.
- W2017803656 hasConceptScore W2017803656C203479927 @default.
- W2017803656 hasConceptScore W2017803656C2777709985 @default.
- W2017803656 hasConceptScore W2017803656C2777904410 @default.
- W2017803656 hasConceptScore W2017803656C41008148 @default.
- W2017803656 hasConceptScore W2017803656C6557445 @default.
- W2017803656 hasConceptScore W2017803656C73555534 @default.
- W2017803656 hasConceptScore W2017803656C78519656 @default.
- W2017803656 hasConceptScore W2017803656C86803240 @default.
- W2017803656 hasConceptScore W2017803656C92835128 @default.
- W2017803656 hasConceptScore W2017803656C9417928 @default.
- W2017803656 hasConceptScore W2017803656C98045186 @default.
- W2017803656 hasIssue "1" @default.
- W2017803656 hasLocation W20178036561 @default.
- W2017803656 hasOpenAccess W2017803656 @default.
- W2017803656 hasPrimaryLocation W20178036561 @default.
- W2017803656 hasRelatedWork W2192221558 @default.
- W2017803656 hasRelatedWork W2349719165 @default.
- W2017803656 hasRelatedWork W2364418924 @default.
- W2017803656 hasRelatedWork W2388947986 @default.
- W2017803656 hasRelatedWork W2592952084 @default.