Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017806384> ?p ?o ?g. }
- W2017806384 endingPage "230" @default.
- W2017806384 startingPage "216" @default.
- W2017806384 abstract "The monitoring of earth surface processes at a global scale requires high temporal frequency remote sensing observations provided up to now by moderate spatial resolution sensors (from 250 m to 7 km). Non-linear estimation processes of land surface variables derived from remote sensing data can be biased by the surface spatial heterogeneity within the moderate spatial resolution pixel. Quantifying this surface spatial heterogeneity is thus required to correct non-linear estimation processes of land surface variables. The first step in this process is to properly characterize the scale of spatial variation of the processes structuring the landscape. Since the description of land surface processes generally involves various spectral bands, a multivariate approach to characterize the surface spatial heterogeneity from multi-spectral remote sensing observations has to be established. This work aims at quantifying the landscape spatial heterogeneity captured by red and near infrared high spatial resolution images using direct and cross-variograms modeled together with the geostatistical linear model of coregionalization. This model quantifies the overall spatial variability and correlation of red and near infrared reflectances over the scene. In addition, it provides an explicit understanding of the landscape spatial structures captured by red and near infrared reflectances and is thus appropriate to describe landscapes composed of areas with contrasted red and near infrared spectral properties. The application of the linear model of coregionalization to 18 contrasted landscapes provides a spatial signature of red and near infrared spectral properties characterizing each type of landscape. Low vegetation cover sites are characterized by positive spatial correlation between red and near infrared. The mosaic pattern of vegetation fields and bare soil fields over crop sites generates high and negative spatial correlation between red and near infrared and increases the spatial variability of red and near infrared. On forest sites, the important amount of vegetation limits the spatial variability of red and the shadow effects mainly captured by near infrared induce a low and positive spatial correlation between red and near infrared. Finally, the linear model of coregionalization applied to red and near infrared is shown to be more powerful than the univariate variogram modeling applied to NDVI because the second order stationarity hypothesis on which variogram modeling relies is more frequently verified for red and near infrared than for NDVI." @default.
- W2017806384 created "2016-06-24" @default.
- W2017806384 creator A5045314681 @default.
- W2017806384 creator A5062476035 @default.
- W2017806384 creator A5072637967 @default.
- W2017806384 creator A5079307083 @default.
- W2017806384 date "2008-01-15" @default.
- W2017806384 modified "2023-09-24" @default.
- W2017806384 title "Multivariate quantification of landscape spatial heterogeneity using variogram models" @default.
- W2017806384 cites W1555533958 @default.
- W2017806384 cites W1579627982 @default.
- W2017806384 cites W183738333 @default.
- W2017806384 cites W1970204445 @default.
- W2017806384 cites W1973475129 @default.
- W2017806384 cites W1975317795 @default.
- W2017806384 cites W1976784693 @default.
- W2017806384 cites W1991276594 @default.
- W2017806384 cites W2002347489 @default.
- W2017806384 cites W2003939279 @default.
- W2017806384 cites W2005571987 @default.
- W2017806384 cites W2014591821 @default.
- W2017806384 cites W2027792629 @default.
- W2017806384 cites W2036479590 @default.
- W2017806384 cites W2046404979 @default.
- W2017806384 cites W2048975838 @default.
- W2017806384 cites W2057993991 @default.
- W2017806384 cites W2060400180 @default.
- W2017806384 cites W2063625269 @default.
- W2017806384 cites W2067002870 @default.
- W2017806384 cites W2076601391 @default.
- W2017806384 cites W2081518881 @default.
- W2017806384 cites W2092217878 @default.
- W2017806384 cites W2107998917 @default.
- W2017806384 cites W2109120345 @default.
- W2017806384 cites W2123720514 @default.
- W2017806384 cites W2134894576 @default.
- W2017806384 cites W2138684399 @default.
- W2017806384 cites W2151647593 @default.
- W2017806384 cites W2153243519 @default.
- W2017806384 cites W2157144502 @default.
- W2017806384 cites W2160218306 @default.
- W2017806384 cites W2161848987 @default.
- W2017806384 cites W2163149627 @default.
- W2017806384 cites W2164741953 @default.
- W2017806384 cites W2167960997 @default.
- W2017806384 cites W406998398 @default.
- W2017806384 cites W43295688 @default.
- W2017806384 cites W612156874 @default.
- W2017806384 doi "https://doi.org/10.1016/j.rse.2007.04.017" @default.
- W2017806384 hasPublicationYear "2008" @default.
- W2017806384 type Work @default.
- W2017806384 sameAs 2017806384 @default.
- W2017806384 citedByCount "62" @default.
- W2017806384 countsByYear W20178063842012 @default.
- W2017806384 countsByYear W20178063842013 @default.
- W2017806384 countsByYear W20178063842014 @default.
- W2017806384 countsByYear W20178063842015 @default.
- W2017806384 countsByYear W20178063842016 @default.
- W2017806384 countsByYear W20178063842017 @default.
- W2017806384 countsByYear W20178063842018 @default.
- W2017806384 countsByYear W20178063842019 @default.
- W2017806384 countsByYear W20178063842020 @default.
- W2017806384 countsByYear W20178063842021 @default.
- W2017806384 countsByYear W20178063842022 @default.
- W2017806384 countsByYear W20178063842023 @default.
- W2017806384 crossrefType "journal-article" @default.
- W2017806384 hasAuthorship W2017806384A5045314681 @default.
- W2017806384 hasAuthorship W2017806384A5062476035 @default.
- W2017806384 hasAuthorship W2017806384A5072637967 @default.
- W2017806384 hasAuthorship W2017806384A5079307083 @default.
- W2017806384 hasBestOaLocation W20178063842 @default.
- W2017806384 hasConcept C105795698 @default.
- W2017806384 hasConcept C119857082 @default.
- W2017806384 hasConcept C142724271 @default.
- W2017806384 hasConcept C150060386 @default.
- W2017806384 hasConcept C154881674 @default.
- W2017806384 hasConcept C154945302 @default.
- W2017806384 hasConcept C158709400 @default.
- W2017806384 hasConcept C160633673 @default.
- W2017806384 hasConcept C161584116 @default.
- W2017806384 hasConcept C180478619 @default.
- W2017806384 hasConcept C18903297 @default.
- W2017806384 hasConcept C205372480 @default.
- W2017806384 hasConcept C205649164 @default.
- W2017806384 hasConcept C2776133958 @default.
- W2017806384 hasConcept C2778755073 @default.
- W2017806384 hasConcept C2780648208 @default.
- W2017806384 hasConcept C33923547 @default.
- W2017806384 hasConcept C39432304 @default.
- W2017806384 hasConcept C41008148 @default.
- W2017806384 hasConcept C4792198 @default.
- W2017806384 hasConcept C58640448 @default.
- W2017806384 hasConcept C62649853 @default.
- W2017806384 hasConcept C71924100 @default.
- W2017806384 hasConcept C76155785 @default.
- W2017806384 hasConcept C81692654 @default.
- W2017806384 hasConcept C86803240 @default.
- W2017806384 hasConcept C94747663 @default.