Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017807526> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2017807526 abstract "The purpose of this paper is to propose a method to abstract and classify vehicle data collected from vision sensors into road scenarios. The classified scenarios can be played back on specialized hardware designed to handle these scenarios to characterize its performance. Since the majority of existing automotive computer vision systems mandate real-time results, this study aims to introduce the utilization of Graphics Processing Units (GPUs) as a prototype to perform these classification and abstraction tasks. This paper evaluates the ability of the GPU architecture to handle these tasks. It also discusses the suitability of GPUs for integrating navigation data with data from vision and RADAR sensors for aiding Visual Simultaneous Localization and Mapping (V-SLAM) tasks for future autonomous vehicle platforms." @default.
- W2017807526 created "2016-06-24" @default.
- W2017807526 creator A5049927766 @default.
- W2017807526 date "2011-11-01" @default.
- W2017807526 modified "2023-09-25" @default.
- W2017807526 title "Performance characterization of automotive computer vision systems using Graphics Processing Units (GPUs)" @default.
- W2017807526 cites W1981024989 @default.
- W2017807526 cites W2149115159 @default.
- W2017807526 cites W2159481344 @default.
- W2017807526 cites W2164598857 @default.
- W2017807526 doi "https://doi.org/10.1109/iciip.2011.6108951" @default.
- W2017807526 hasPublicationYear "2011" @default.
- W2017807526 type Work @default.
- W2017807526 sameAs 2017807526 @default.
- W2017807526 citedByCount "3" @default.
- W2017807526 countsByYear W20178075262014 @default.
- W2017807526 countsByYear W20178075262015 @default.
- W2017807526 crossrefType "proceedings-article" @default.
- W2017807526 hasAuthorship W2017807526A5049927766 @default.
- W2017807526 hasConcept C121684516 @default.
- W2017807526 hasConcept C127413603 @default.
- W2017807526 hasConcept C146978453 @default.
- W2017807526 hasConcept C171250308 @default.
- W2017807526 hasConcept C173608175 @default.
- W2017807526 hasConcept C192562407 @default.
- W2017807526 hasConcept C21442007 @default.
- W2017807526 hasConcept C2779851693 @default.
- W2017807526 hasConcept C2780841128 @default.
- W2017807526 hasConcept C41008148 @default.
- W2017807526 hasConcept C526921623 @default.
- W2017807526 hasConcept C77660652 @default.
- W2017807526 hasConceptScore W2017807526C121684516 @default.
- W2017807526 hasConceptScore W2017807526C127413603 @default.
- W2017807526 hasConceptScore W2017807526C146978453 @default.
- W2017807526 hasConceptScore W2017807526C171250308 @default.
- W2017807526 hasConceptScore W2017807526C173608175 @default.
- W2017807526 hasConceptScore W2017807526C192562407 @default.
- W2017807526 hasConceptScore W2017807526C21442007 @default.
- W2017807526 hasConceptScore W2017807526C2779851693 @default.
- W2017807526 hasConceptScore W2017807526C2780841128 @default.
- W2017807526 hasConceptScore W2017807526C41008148 @default.
- W2017807526 hasConceptScore W2017807526C526921623 @default.
- W2017807526 hasConceptScore W2017807526C77660652 @default.
- W2017807526 hasLocation W20178075261 @default.
- W2017807526 hasOpenAccess W2017807526 @default.
- W2017807526 hasPrimaryLocation W20178075261 @default.
- W2017807526 hasRelatedWork W104816915 @default.
- W2017807526 hasRelatedWork W167331250 @default.
- W2017807526 hasRelatedWork W1972113196 @default.
- W2017807526 hasRelatedWork W1995571042 @default.
- W2017807526 hasRelatedWork W2061240488 @default.
- W2017807526 hasRelatedWork W2160044080 @default.
- W2017807526 hasRelatedWork W3037029703 @default.
- W2017807526 hasRelatedWork W3087273470 @default.
- W2017807526 hasRelatedWork W3087406806 @default.
- W2017807526 hasRelatedWork W1824574786 @default.
- W2017807526 isParatext "false" @default.
- W2017807526 isRetracted "false" @default.
- W2017807526 magId "2017807526" @default.
- W2017807526 workType "article" @default.