Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017810103> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2017810103 abstract "In this paper, a non linear adaptive Gaussian de-noising method for diffusion tensor imaging (DTI) is proposed. DTI image are of poor SNR and low resolution images. In order to improve DTI, the proposed method is applied to the diffusion weighted images (DWI) from which DTI is computed. The anisotropic flow principle is used in non linear adaptive Gaussian denoising method and smoothing will vary according to the anisotropic flow. The proposed method is compared with the scalar Partial Differential Equation (PDE) denoising method. The non linear adaptive Gaussian denoising method shows better performance compared to scalar PDE. To evaluate the efficiency of both denoising methods, image quality metrics like peak signal-to-noise ratio (PSNR) and mean structural similarity index measure (MSSIM) are used. The experimental results indicate the good performance of proposed method and it has a better denoising effect in DTI compared to scalar PDE." @default.
- W2017810103 created "2016-06-24" @default.
- W2017810103 creator A5009241021 @default.
- W2017810103 creator A5034530938 @default.
- W2017810103 date "2013-12-01" @default.
- W2017810103 modified "2023-09-23" @default.
- W2017810103 title "Comparison of denoising methods in diffusion tensor imaging" @default.
- W2017810103 cites W2014617656 @default.
- W2017810103 cites W2064076387 @default.
- W2017810103 cites W2127289369 @default.
- W2017810103 cites W2133665775 @default.
- W2017810103 cites W2546915686 @default.
- W2017810103 cites W2600151521 @default.
- W2017810103 cites W2787426888 @default.
- W2017810103 doi "https://doi.org/10.1109/indcon.2013.6726141" @default.
- W2017810103 hasPublicationYear "2013" @default.
- W2017810103 type Work @default.
- W2017810103 sameAs 2017810103 @default.
- W2017810103 citedByCount "0" @default.
- W2017810103 crossrefType "proceedings-article" @default.
- W2017810103 hasAuthorship W2017810103A5009241021 @default.
- W2017810103 hasAuthorship W2017810103A5034530938 @default.
- W2017810103 hasConcept C101453961 @default.
- W2017810103 hasConcept C11413529 @default.
- W2017810103 hasConcept C115961682 @default.
- W2017810103 hasConcept C121332964 @default.
- W2017810103 hasConcept C126838900 @default.
- W2017810103 hasConcept C134306372 @default.
- W2017810103 hasConcept C143409427 @default.
- W2017810103 hasConcept C149550507 @default.
- W2017810103 hasConcept C153180895 @default.
- W2017810103 hasConcept C154945302 @default.
- W2017810103 hasConcept C163294075 @default.
- W2017810103 hasConcept C163716315 @default.
- W2017810103 hasConcept C203504353 @default.
- W2017810103 hasConcept C2524010 @default.
- W2017810103 hasConcept C2983327147 @default.
- W2017810103 hasConcept C31972630 @default.
- W2017810103 hasConcept C33923547 @default.
- W2017810103 hasConcept C3770464 @default.
- W2017810103 hasConcept C41008148 @default.
- W2017810103 hasConcept C4199805 @default.
- W2017810103 hasConcept C57691317 @default.
- W2017810103 hasConcept C62520636 @default.
- W2017810103 hasConcept C71924100 @default.
- W2017810103 hasConcept C93779851 @default.
- W2017810103 hasConceptScore W2017810103C101453961 @default.
- W2017810103 hasConceptScore W2017810103C11413529 @default.
- W2017810103 hasConceptScore W2017810103C115961682 @default.
- W2017810103 hasConceptScore W2017810103C121332964 @default.
- W2017810103 hasConceptScore W2017810103C126838900 @default.
- W2017810103 hasConceptScore W2017810103C134306372 @default.
- W2017810103 hasConceptScore W2017810103C143409427 @default.
- W2017810103 hasConceptScore W2017810103C149550507 @default.
- W2017810103 hasConceptScore W2017810103C153180895 @default.
- W2017810103 hasConceptScore W2017810103C154945302 @default.
- W2017810103 hasConceptScore W2017810103C163294075 @default.
- W2017810103 hasConceptScore W2017810103C163716315 @default.
- W2017810103 hasConceptScore W2017810103C203504353 @default.
- W2017810103 hasConceptScore W2017810103C2524010 @default.
- W2017810103 hasConceptScore W2017810103C2983327147 @default.
- W2017810103 hasConceptScore W2017810103C31972630 @default.
- W2017810103 hasConceptScore W2017810103C33923547 @default.
- W2017810103 hasConceptScore W2017810103C3770464 @default.
- W2017810103 hasConceptScore W2017810103C41008148 @default.
- W2017810103 hasConceptScore W2017810103C4199805 @default.
- W2017810103 hasConceptScore W2017810103C57691317 @default.
- W2017810103 hasConceptScore W2017810103C62520636 @default.
- W2017810103 hasConceptScore W2017810103C71924100 @default.
- W2017810103 hasConceptScore W2017810103C93779851 @default.
- W2017810103 hasLocation W20178101031 @default.
- W2017810103 hasOpenAccess W2017810103 @default.
- W2017810103 hasPrimaryLocation W20178101031 @default.
- W2017810103 hasRelatedWork W158101835 @default.
- W2017810103 hasRelatedWork W1973103293 @default.
- W2017810103 hasRelatedWork W2015687076 @default.
- W2017810103 hasRelatedWork W2026279888 @default.
- W2017810103 hasRelatedWork W2038825330 @default.
- W2017810103 hasRelatedWork W2064556594 @default.
- W2017810103 hasRelatedWork W2069494733 @default.
- W2017810103 hasRelatedWork W2089072800 @default.
- W2017810103 hasRelatedWork W2117390704 @default.
- W2017810103 hasRelatedWork W2125114039 @default.
- W2017810103 hasRelatedWork W2351386898 @default.
- W2017810103 hasRelatedWork W2357702753 @default.
- W2017810103 hasRelatedWork W2358674322 @default.
- W2017810103 hasRelatedWork W2377766376 @default.
- W2017810103 hasRelatedWork W2392121647 @default.
- W2017810103 hasRelatedWork W2412317806 @default.
- W2017810103 hasRelatedWork W2895629949 @default.
- W2017810103 hasRelatedWork W2911790853 @default.
- W2017810103 hasRelatedWork W3016518197 @default.
- W2017810103 hasRelatedWork W57094226 @default.
- W2017810103 isParatext "false" @default.
- W2017810103 isRetracted "false" @default.
- W2017810103 magId "2017810103" @default.
- W2017810103 workType "article" @default.