Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017845479> ?p ?o ?g. }
- W2017845479 endingPage "4641" @default.
- W2017845479 startingPage "4625" @default.
- W2017845479 abstract "We have determined the dependence of the dissociative adsorption probability in the zero coverage limit, S0, for H2 on Cu(111) as a function of translational energy, Ei, and incidence angle, θi, vibrational state, v, and rotational state, J. We have also obtained information on the effect of surface temperature, Ts, on this probability. These results have been obtained by combining the findings of two separate experiments. We have obtained the form of the dependence of S0 on Ei at Ts=925 K for a range of quantum states from desorption experiments via the principle of detailed balance. We have obtained absolute S0 values from direct molecular beam adsorption experiments, which reveal that S0 scales with the so-called ‘‘normal energy,’’ En=Ei cos2 θi. The desorption experiments provide detailed information for J=0 to 10 of H2(v=0) and for J=0 to 7 of H2(v=1). The beam experiments additionally provide information on the adsorption of H2(v=2), averaged over J. All measurements are consistent with adsorption functions with an s-shaped form, which can be described by S0=A(1+erf(x))/2, where x=(En−E0)/W. Values of W are ∼0.16 and 0.13 eV for v=0 and v=1, respectively, at Ts=925 K, falling by about 0.05 eV for Ts=120 K, and with only a slight dependence on J. Values of A are insensitive to v and J, with a value of ∼0.25. S(En,v,J) curves are thus similar for different v and J, but shifted in En. In contrast, we find that the values of E0, which determine the mid-point of the curves, have a strong dependence on v and J. Specifically, E0 for H2(v=0) molecules is about 0.6 eV, falling to 0.3 and 0.1 eV for H2(v=1) and H2(v=2), respectively. Translational energy is thus about twice as effective as vibrational energy in promoting dissociation. E0 rises with increasing J at low J, before falling at high J, indicating that rotational motion hinders adsorption for low rotational states (J<4), and enhances adsorption for high rotational states (J≳4). Results are compared with similar studies on the D2/Cu(111) system and with recent calculations. Finally, these results are used to predict the dependence of the rate of dissociation on temperature for a ‘‘bulb’’ experiment with ambient hydrogen gas in contact with a Cu(111) surface. This simulation yields an activation energy of 0.47 eV for temperatures close to 800 K, compared to a literature value of 0.4 eV from experiment. Analysis of the temperature dependence reveals that the dominant reason for the increase in rate at high temperature is the increase in population of the high energy tail of the translational energy distribution." @default.
- W2017845479 created "2016-06-24" @default.
- W2017845479 creator A5003685354 @default.
- W2017845479 creator A5049857121 @default.
- W2017845479 creator A5052679976 @default.
- W2017845479 date "1995-03-15" @default.
- W2017845479 modified "2023-10-16" @default.
- W2017845479 title "Quantum-state-specific dynamics of the dissociative adsorption and associative desorption of H2 at a Cu(111) surface" @default.
- W2017845479 cites W1965300530 @default.
- W2017845479 cites W1966842709 @default.
- W2017845479 cites W1967151553 @default.
- W2017845479 cites W1968352921 @default.
- W2017845479 cites W1968484337 @default.
- W2017845479 cites W1973402948 @default.
- W2017845479 cites W1974996668 @default.
- W2017845479 cites W1976815214 @default.
- W2017845479 cites W1976821952 @default.
- W2017845479 cites W1978249208 @default.
- W2017845479 cites W1978355259 @default.
- W2017845479 cites W1979970493 @default.
- W2017845479 cites W1982081334 @default.
- W2017845479 cites W1983157709 @default.
- W2017845479 cites W1985313949 @default.
- W2017845479 cites W1987943952 @default.
- W2017845479 cites W1988007645 @default.
- W2017845479 cites W1990525090 @default.
- W2017845479 cites W1990827405 @default.
- W2017845479 cites W1992003236 @default.
- W2017845479 cites W1993273996 @default.
- W2017845479 cites W1994342021 @default.
- W2017845479 cites W1995213778 @default.
- W2017845479 cites W1996759936 @default.
- W2017845479 cites W1997923082 @default.
- W2017845479 cites W1997995795 @default.
- W2017845479 cites W1999244534 @default.
- W2017845479 cites W2000259670 @default.
- W2017845479 cites W2003062639 @default.
- W2017845479 cites W2006018032 @default.
- W2017845479 cites W2010301358 @default.
- W2017845479 cites W2010478033 @default.
- W2017845479 cites W2011612248 @default.
- W2017845479 cites W2012013138 @default.
- W2017845479 cites W2012895511 @default.
- W2017845479 cites W2016982772 @default.
- W2017845479 cites W2017854104 @default.
- W2017845479 cites W2019460973 @default.
- W2017845479 cites W2021549418 @default.
- W2017845479 cites W2026388176 @default.
- W2017845479 cites W2026630928 @default.
- W2017845479 cites W2026724808 @default.
- W2017845479 cites W2026816107 @default.
- W2017845479 cites W2027046135 @default.
- W2017845479 cites W2027257723 @default.
- W2017845479 cites W2029061431 @default.
- W2017845479 cites W2032118337 @default.
- W2017845479 cites W2034747979 @default.
- W2017845479 cites W2034980826 @default.
- W2017845479 cites W2037987234 @default.
- W2017845479 cites W2038838022 @default.
- W2017845479 cites W2049837030 @default.
- W2017845479 cites W2050114226 @default.
- W2017845479 cites W2050882855 @default.
- W2017845479 cites W2054404180 @default.
- W2017845479 cites W2056208037 @default.
- W2017845479 cites W2056880140 @default.
- W2017845479 cites W2060212108 @default.
- W2017845479 cites W2060437480 @default.
- W2017845479 cites W2061250171 @default.
- W2017845479 cites W2064388509 @default.
- W2017845479 cites W2064853036 @default.
- W2017845479 cites W2066491011 @default.
- W2017845479 cites W2070580213 @default.
- W2017845479 cites W2071330627 @default.
- W2017845479 cites W2075693060 @default.
- W2017845479 cites W2077471011 @default.
- W2017845479 cites W2077937649 @default.
- W2017845479 cites W2077963381 @default.
- W2017845479 cites W2080440865 @default.
- W2017845479 cites W2081468905 @default.
- W2017845479 cites W2082490020 @default.
- W2017845479 cites W2083582931 @default.
- W2017845479 cites W2084302892 @default.
- W2017845479 cites W2085608654 @default.
- W2017845479 cites W2086122275 @default.
- W2017845479 cites W2089889852 @default.
- W2017845479 cites W2093310556 @default.
- W2017845479 cites W2094849950 @default.
- W2017845479 cites W2094954784 @default.
- W2017845479 cites W2099610083 @default.
- W2017845479 cites W2117155125 @default.
- W2017845479 cites W2155599522 @default.
- W2017845479 cites W2315828182 @default.
- W2017845479 cites W4247382714 @default.
- W2017845479 cites W4251013143 @default.
- W2017845479 doi "https://doi.org/10.1063/1.469511" @default.
- W2017845479 hasPublicationYear "1995" @default.
- W2017845479 type Work @default.
- W2017845479 sameAs 2017845479 @default.