Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018011191> ?p ?o ?g. }
- W2018011191 abstract "The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency." @default.
- W2018011191 created "2016-06-24" @default.
- W2018011191 creator A5031043959 @default.
- W2018011191 creator A5044659164 @default.
- W2018011191 creator A5072810129 @default.
- W2018011191 date "2012-08-13" @default.
- W2018011191 modified "2023-09-24" @default.
- W2018011191 title "Statistical Orbit Determination using the Particle Filter for incorporating Non-Gaussian Uncertainties." @default.
- W2018011191 cites W1531532259 @default.
- W2018011191 cites W1973876344 @default.
- W2018011191 cites W2009104157 @default.
- W2018011191 cites W2020934227 @default.
- W2018011191 cites W2076186907 @default.
- W2018011191 cites W2082542916 @default.
- W2018011191 cites W2105934661 @default.
- W2018011191 cites W2107929215 @default.
- W2018011191 cites W2117914019 @default.
- W2018011191 cites W2123487311 @default.
- W2018011191 cites W2160337655 @default.
- W2018011191 cites W2165081580 @default.
- W2018011191 cites W2178829616 @default.
- W2018011191 cites W2484866470 @default.
- W2018011191 cites W2152679844 @default.
- W2018011191 doi "https://doi.org/10.2514/6.2012-5063" @default.
- W2018011191 hasPublicationYear "2012" @default.
- W2018011191 type Work @default.
- W2018011191 sameAs 2018011191 @default.
- W2018011191 citedByCount "8" @default.
- W2018011191 countsByYear W20180111912015 @default.
- W2018011191 countsByYear W20180111912017 @default.
- W2018011191 countsByYear W20180111912018 @default.
- W2018011191 countsByYear W20180111912020 @default.
- W2018011191 countsByYear W20180111912021 @default.
- W2018011191 crossrefType "proceedings-article" @default.
- W2018011191 hasAuthorship W2018011191A5031043959 @default.
- W2018011191 hasAuthorship W2018011191A5044659164 @default.
- W2018011191 hasAuthorship W2018011191A5072810129 @default.
- W2018011191 hasBestOaLocation W20180111912 @default.
- W2018011191 hasConcept C105795698 @default.
- W2018011191 hasConcept C106131492 @default.
- W2018011191 hasConcept C107768556 @default.
- W2018011191 hasConcept C11413529 @default.
- W2018011191 hasConcept C121332964 @default.
- W2018011191 hasConcept C127413603 @default.
- W2018011191 hasConcept C146978453 @default.
- W2018011191 hasConcept C149441793 @default.
- W2018011191 hasConcept C157286648 @default.
- W2018011191 hasConcept C163716315 @default.
- W2018011191 hasConcept C19499675 @default.
- W2018011191 hasConcept C196644772 @default.
- W2018011191 hasConcept C197055811 @default.
- W2018011191 hasConcept C206833254 @default.
- W2018011191 hasConcept C31972630 @default.
- W2018011191 hasConcept C33923547 @default.
- W2018011191 hasConcept C41008148 @default.
- W2018011191 hasConcept C52421305 @default.
- W2018011191 hasConcept C60229501 @default.
- W2018011191 hasConcept C62520636 @default.
- W2018011191 hasConcept C76155785 @default.
- W2018011191 hasConcept C79334102 @default.
- W2018011191 hasConceptScore W2018011191C105795698 @default.
- W2018011191 hasConceptScore W2018011191C106131492 @default.
- W2018011191 hasConceptScore W2018011191C107768556 @default.
- W2018011191 hasConceptScore W2018011191C11413529 @default.
- W2018011191 hasConceptScore W2018011191C121332964 @default.
- W2018011191 hasConceptScore W2018011191C127413603 @default.
- W2018011191 hasConceptScore W2018011191C146978453 @default.
- W2018011191 hasConceptScore W2018011191C149441793 @default.
- W2018011191 hasConceptScore W2018011191C157286648 @default.
- W2018011191 hasConceptScore W2018011191C163716315 @default.
- W2018011191 hasConceptScore W2018011191C19499675 @default.
- W2018011191 hasConceptScore W2018011191C196644772 @default.
- W2018011191 hasConceptScore W2018011191C197055811 @default.
- W2018011191 hasConceptScore W2018011191C206833254 @default.
- W2018011191 hasConceptScore W2018011191C31972630 @default.
- W2018011191 hasConceptScore W2018011191C33923547 @default.
- W2018011191 hasConceptScore W2018011191C41008148 @default.
- W2018011191 hasConceptScore W2018011191C52421305 @default.
- W2018011191 hasConceptScore W2018011191C60229501 @default.
- W2018011191 hasConceptScore W2018011191C62520636 @default.
- W2018011191 hasConceptScore W2018011191C76155785 @default.
- W2018011191 hasConceptScore W2018011191C79334102 @default.
- W2018011191 hasLocation W20180111911 @default.
- W2018011191 hasLocation W20180111912 @default.
- W2018011191 hasOpenAccess W2018011191 @default.
- W2018011191 hasPrimaryLocation W20180111911 @default.
- W2018011191 hasRelatedWork W1030885088 @default.
- W2018011191 hasRelatedWork W1485365320 @default.
- W2018011191 hasRelatedWork W2012528372 @default.
- W2018011191 hasRelatedWork W2016874526 @default.
- W2018011191 hasRelatedWork W2047993903 @default.
- W2018011191 hasRelatedWork W2061207899 @default.
- W2018011191 hasRelatedWork W2066443842 @default.
- W2018011191 hasRelatedWork W2076263771 @default.
- W2018011191 hasRelatedWork W2150951085 @default.
- W2018011191 hasRelatedWork W2791318716 @default.
- W2018011191 hasRelatedWork W2802240763 @default.
- W2018011191 hasRelatedWork W2898053018 @default.
- W2018011191 hasRelatedWork W296663550 @default.
- W2018011191 hasRelatedWork W3034870933 @default.