Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018045813> ?p ?o ?g. }
- W2018045813 endingPage "27" @default.
- W2018045813 startingPage "15" @default.
- W2018045813 abstract "In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows." @default.
- W2018045813 created "2016-06-24" @default.
- W2018045813 creator A5033171768 @default.
- W2018045813 creator A5051192251 @default.
- W2018045813 creator A5059227152 @default.
- W2018045813 creator A5074300921 @default.
- W2018045813 date "2015-04-01" @default.
- W2018045813 modified "2023-10-17" @default.
- W2018045813 title "Simulation of the two-fluid model on incompressible flow with Fractional Step method for both resolved and unresolved scale interfaces" @default.
- W2018045813 cites W1972247762 @default.
- W2018045813 cites W1977482354 @default.
- W2018045813 cites W1978188790 @default.
- W2018045813 cites W1988073861 @default.
- W2018045813 cites W1988704950 @default.
- W2018045813 cites W1992305705 @default.
- W2018045813 cites W1994875376 @default.
- W2018045813 cites W1995669097 @default.
- W2018045813 cites W1999361227 @default.
- W2018045813 cites W2000814863 @default.
- W2018045813 cites W2010994426 @default.
- W2018045813 cites W2015667517 @default.
- W2018045813 cites W2016423487 @default.
- W2018045813 cites W2020168202 @default.
- W2018045813 cites W2023248330 @default.
- W2018045813 cites W2026253355 @default.
- W2018045813 cites W2030711470 @default.
- W2018045813 cites W2036247509 @default.
- W2018045813 cites W2036549092 @default.
- W2018045813 cites W2046899724 @default.
- W2018045813 cites W2048366275 @default.
- W2018045813 cites W2056211898 @default.
- W2018045813 cites W2076077791 @default.
- W2018045813 cites W2080380997 @default.
- W2018045813 cites W2083280085 @default.
- W2018045813 cites W2083659289 @default.
- W2018045813 cites W2088277615 @default.
- W2018045813 cites W2104152474 @default.
- W2018045813 cites W2106545589 @default.
- W2018045813 cites W2116723694 @default.
- W2018045813 cites W2137068328 @default.
- W2018045813 cites W2149433242 @default.
- W2018045813 cites W2168575889 @default.
- W2018045813 doi "https://doi.org/10.1016/j.ijheatfluidflow.2014.11.002" @default.
- W2018045813 hasPublicationYear "2015" @default.
- W2018045813 type Work @default.
- W2018045813 sameAs 2018045813 @default.
- W2018045813 citedByCount "2" @default.
- W2018045813 countsByYear W20180458132020 @default.
- W2018045813 countsByYear W20180458132023 @default.
- W2018045813 crossrefType "journal-article" @default.
- W2018045813 hasAuthorship W2018045813A5033171768 @default.
- W2018045813 hasAuthorship W2018045813A5051192251 @default.
- W2018045813 hasAuthorship W2018045813A5059227152 @default.
- W2018045813 hasAuthorship W2018045813A5074300921 @default.
- W2018045813 hasBestOaLocation W20180458132 @default.
- W2018045813 hasConcept C11413529 @default.
- W2018045813 hasConcept C121332964 @default.
- W2018045813 hasConcept C134306372 @default.
- W2018045813 hasConcept C138268822 @default.
- W2018045813 hasConcept C154945302 @default.
- W2018045813 hasConcept C202426404 @default.
- W2018045813 hasConcept C21018558 @default.
- W2018045813 hasConcept C28826006 @default.
- W2018045813 hasConcept C33923547 @default.
- W2018045813 hasConcept C38349280 @default.
- W2018045813 hasConcept C41008148 @default.
- W2018045813 hasConcept C50415386 @default.
- W2018045813 hasConcept C50478463 @default.
- W2018045813 hasConcept C57493831 @default.
- W2018045813 hasConcept C57879066 @default.
- W2018045813 hasConcept C65557600 @default.
- W2018045813 hasConcept C73000952 @default.
- W2018045813 hasConcept C84655787 @default.
- W2018045813 hasConcept C90278072 @default.
- W2018045813 hasConceptScore W2018045813C11413529 @default.
- W2018045813 hasConceptScore W2018045813C121332964 @default.
- W2018045813 hasConceptScore W2018045813C134306372 @default.
- W2018045813 hasConceptScore W2018045813C138268822 @default.
- W2018045813 hasConceptScore W2018045813C154945302 @default.
- W2018045813 hasConceptScore W2018045813C202426404 @default.
- W2018045813 hasConceptScore W2018045813C21018558 @default.
- W2018045813 hasConceptScore W2018045813C28826006 @default.
- W2018045813 hasConceptScore W2018045813C33923547 @default.
- W2018045813 hasConceptScore W2018045813C38349280 @default.
- W2018045813 hasConceptScore W2018045813C41008148 @default.
- W2018045813 hasConceptScore W2018045813C50415386 @default.
- W2018045813 hasConceptScore W2018045813C50478463 @default.
- W2018045813 hasConceptScore W2018045813C57493831 @default.
- W2018045813 hasConceptScore W2018045813C57879066 @default.
- W2018045813 hasConceptScore W2018045813C65557600 @default.
- W2018045813 hasConceptScore W2018045813C73000952 @default.
- W2018045813 hasConceptScore W2018045813C84655787 @default.
- W2018045813 hasConceptScore W2018045813C90278072 @default.
- W2018045813 hasFunder F4320321837 @default.
- W2018045813 hasLocation W20180458131 @default.
- W2018045813 hasLocation W20180458132 @default.
- W2018045813 hasOpenAccess W2018045813 @default.
- W2018045813 hasPrimaryLocation W20180458131 @default.