Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018047324> ?p ?o ?g. }
- W2018047324 endingPage "562" @default.
- W2018047324 startingPage "439" @default.
- W2018047324 abstract "A major consideration we had in writing this survey was to make it accessible to mathematicians as well as to computer scientists, since expander graphs, the protagonists of our story, come up in numerous and often surprising contexts in both fields. But, perhaps, we should start with a few words about graphs in general. They are, of course, one of the prime objects of study in Discrete Mathematics. However, graphs are among the most ubiquitous models of both natural and human-made structures. In the natural and social sciences they model relations among species, societies, companies, etc. In computer science, they represent networks of communication, data organization, computational devices as well as the flow of computation, and more. In mathematics, Cayley graphs are useful in Group Theory. Graphs carry a natural metric and are therefore useful in Geometry, and though they are “just” one-dimensional complexes, they are useful in certain parts of Topology, e.g. Knot Theory. In statistical physics, graphs can represent local connections between interacting parts of a system, as well as the dynamics of a physical process on such systems. The study of these models calls, then, for the comprehension of the significant structural properties of the relevant graphs. But are there nontrivial structural properties which are universally important? Expansion of a graph requires that it is simultaneously sparse and highly connected. Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early ’70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. In mathematics, we will encounter e.g. their role in the study of metric embeddings, and in particular in work around the Baum-Connes Conjecture. Expansion is closely related to the convergence rates of Markov Chains, and so they play a key role in the study of Monte-Carlo algorithms in statistical mechanics and in a host of practical computational applications. The list of such interesting and fruitful connections goes on and on with so many applications we will not even" @default.
- W2018047324 created "2016-06-24" @default.
- W2018047324 creator A5050009387 @default.
- W2018047324 creator A5064596926 @default.
- W2018047324 date "2006-08-07" @default.
- W2018047324 modified "2023-10-12" @default.
- W2018047324 title "Expander graphs and their applications" @default.
- W2018047324 cites W100944330 @default.
- W2018047324 cites W124759327 @default.
- W2018047324 cites W1497169204 @default.
- W2018047324 cites W1499673022 @default.
- W2018047324 cites W1518031539 @default.
- W2018047324 cites W1518824415 @default.
- W2018047324 cites W1526777878 @default.
- W2018047324 cites W1528460097 @default.
- W2018047324 cites W1530740238 @default.
- W2018047324 cites W1551005442 @default.
- W2018047324 cites W1569752386 @default.
- W2018047324 cites W1571037334 @default.
- W2018047324 cites W1589494766 @default.
- W2018047324 cites W1592213313 @default.
- W2018047324 cites W1596185498 @default.
- W2018047324 cites W1599335667 @default.
- W2018047324 cites W159960536 @default.
- W2018047324 cites W1606480398 @default.
- W2018047324 cites W1607251184 @default.
- W2018047324 cites W1607875726 @default.
- W2018047324 cites W1630072945 @default.
- W2018047324 cites W1631603072 @default.
- W2018047324 cites W1948567022 @default.
- W2018047324 cites W1964053266 @default.
- W2018047324 cites W1966806226 @default.
- W2018047324 cites W1967780722 @default.
- W2018047324 cites W1968864043 @default.
- W2018047324 cites W1971907125 @default.
- W2018047324 cites W1974893148 @default.
- W2018047324 cites W1975442866 @default.
- W2018047324 cites W1976920905 @default.
- W2018047324 cites W1978238050 @default.
- W2018047324 cites W1979110822 @default.
- W2018047324 cites W1984569679 @default.
- W2018047324 cites W1989146501 @default.
- W2018047324 cites W1991070563 @default.
- W2018047324 cites W1993111701 @default.
- W2018047324 cites W1993418693 @default.
- W2018047324 cites W1994584977 @default.
- W2018047324 cites W1995875735 @default.
- W2018047324 cites W1996146326 @default.
- W2018047324 cites W1998400388 @default.
- W2018047324 cites W1998777945 @default.
- W2018047324 cites W1998836349 @default.
- W2018047324 cites W2003576269 @default.
- W2018047324 cites W2011438986 @default.
- W2018047324 cites W2012273627 @default.
- W2018047324 cites W2012453147 @default.
- W2018047324 cites W2014482556 @default.
- W2018047324 cites W2018566183 @default.
- W2018047324 cites W2019578639 @default.
- W2018047324 cites W2020632401 @default.
- W2018047324 cites W2022234468 @default.
- W2018047324 cites W2024330321 @default.
- W2018047324 cites W2026643055 @default.
- W2018047324 cites W2026709222 @default.
- W2018047324 cites W2026797659 @default.
- W2018047324 cites W2029013046 @default.
- W2018047324 cites W2031246048 @default.
- W2018047324 cites W2035254573 @default.
- W2018047324 cites W2036871172 @default.
- W2018047324 cites W2036878392 @default.
- W2018047324 cites W2038098381 @default.
- W2018047324 cites W2040504571 @default.
- W2018047324 cites W204341840 @default.
- W2018047324 cites W2044415027 @default.
- W2018047324 cites W2044920338 @default.
- W2018047324 cites W2045377861 @default.
- W2018047324 cites W2047342855 @default.
- W2018047324 cites W2048958388 @default.
- W2018047324 cites W2049357019 @default.
- W2018047324 cites W2049433041 @default.
- W2018047324 cites W2051569409 @default.
- W2018047324 cites W2053651631 @default.
- W2018047324 cites W2054649237 @default.
- W2018047324 cites W2055656009 @default.
- W2018047324 cites W2056069725 @default.
- W2018047324 cites W2057648657 @default.
- W2018047324 cites W2059570262 @default.
- W2018047324 cites W2060474153 @default.
- W2018047324 cites W2061171222 @default.
- W2018047324 cites W2063491776 @default.
- W2018047324 cites W2066015450 @default.
- W2018047324 cites W2068871408 @default.
- W2018047324 cites W2070661348 @default.
- W2018047324 cites W2072211488 @default.
- W2018047324 cites W2073527169 @default.
- W2018047324 cites W2073849603 @default.
- W2018047324 cites W2080295594 @default.
- W2018047324 cites W2081254453 @default.
- W2018047324 cites W2084384424 @default.