Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018077834> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2018077834 endingPage "1184" @default.
- W2018077834 startingPage "1183" @default.
- W2018077834 abstract "<h3>Objectives</h3> To quantify acute injuries sustained during weightlifting that result in training restrictions and identify potential risk factors or preventative factors in Master athletes and to evaluate potentially complex interactions of age, sex, health-related and training-related predictors of injuries with machine learning (ML) algorithms. <h3>Methods</h3> A total of 976 Masters weightlifters from Australia, Canada, Europe and the USA, ages 35–88 (51.1% women), completed an online survey that included questions on weightlifting injuries, chronic diseases, sport history and training practices. Ensembles of ML algorithms were used to identify factors associated with acute weightlifting injuries and performance of the prediction models was evaluated. In addition, a subgroup of variables selected by six experts were entered into a logistic regression model to estimate the likelihood of an injury. <h3>Results</h3> The accuracy of ML models predicting injuries ranged from 0.727 to 0.876 for back, hips, knees and wrists, but were less accurate (0.644) for shoulder injuries. Male Master athletes had a higher prevalence of weightlifting injuries than female Master athletes, ranging from 12% to 42%. Chronic inflammation or osteoarthritis were common among both men and women. This was associated with an increase in acute injuries. <h3>Conclusions</h3> Training-specific variables, such as choices of training programmes or nutrition programmes, may aid in preventing acute injuries. ML models can identify potential risk factors or preventative measures for sport injuries." @default.
- W2018077834 created "2016-06-24" @default.
- W2018077834 creator A5005762345 @default.
- W2018077834 date "2002-11-23" @default.
- W2018077834 modified "2023-10-18" @default.
- W2018077834 title "Cannabis and mental health" @default.
- W2018077834 cites W1970071373 @default.
- W2018077834 cites W1988843110 @default.
- W2018077834 cites W1999561105 @default.
- W2018077834 cites W2000398217 @default.
- W2018077834 cites W2013888376 @default.
- W2018077834 cites W2073072751 @default.
- W2018077834 cites W2079847735 @default.
- W2018077834 cites W2089615886 @default.
- W2018077834 cites W2110339257 @default.
- W2018077834 cites W2122251240 @default.
- W2018077834 cites W2126292939 @default.
- W2018077834 cites W2142434132 @default.
- W2018077834 cites W2417689732 @default.
- W2018077834 doi "https://doi.org/10.1136/bmj.325.7374.1183" @default.
- W2018077834 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1124674" @default.
- W2018077834 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12446510" @default.
- W2018077834 hasPublicationYear "2002" @default.
- W2018077834 type Work @default.
- W2018077834 sameAs 2018077834 @default.
- W2018077834 citedByCount "87" @default.
- W2018077834 countsByYear W20180778342012 @default.
- W2018077834 countsByYear W20180778342013 @default.
- W2018077834 countsByYear W20180778342014 @default.
- W2018077834 countsByYear W20180778342015 @default.
- W2018077834 countsByYear W20180778342016 @default.
- W2018077834 countsByYear W20180778342018 @default.
- W2018077834 countsByYear W20180778342019 @default.
- W2018077834 countsByYear W20180778342021 @default.
- W2018077834 countsByYear W20180778342022 @default.
- W2018077834 countsByYear W20180778342023 @default.
- W2018077834 crossrefType "journal-article" @default.
- W2018077834 hasAuthorship W2018077834A5005762345 @default.
- W2018077834 hasBestOaLocation W20180778342 @default.
- W2018077834 hasConcept C118552586 @default.
- W2018077834 hasConcept C134362201 @default.
- W2018077834 hasConcept C2522767166 @default.
- W2018077834 hasConcept C2776895053 @default.
- W2018077834 hasConcept C2777056318 @default.
- W2018077834 hasConcept C2780313146 @default.
- W2018077834 hasConcept C41008148 @default.
- W2018077834 hasConcept C71924100 @default.
- W2018077834 hasConceptScore W2018077834C118552586 @default.
- W2018077834 hasConceptScore W2018077834C134362201 @default.
- W2018077834 hasConceptScore W2018077834C2522767166 @default.
- W2018077834 hasConceptScore W2018077834C2776895053 @default.
- W2018077834 hasConceptScore W2018077834C2777056318 @default.
- W2018077834 hasConceptScore W2018077834C2780313146 @default.
- W2018077834 hasConceptScore W2018077834C41008148 @default.
- W2018077834 hasConceptScore W2018077834C71924100 @default.
- W2018077834 hasIssue "7374" @default.
- W2018077834 hasLocation W20180778341 @default.
- W2018077834 hasLocation W20180778342 @default.
- W2018077834 hasLocation W20180778343 @default.
- W2018077834 hasOpenAccess W2018077834 @default.
- W2018077834 hasPrimaryLocation W20180778341 @default.
- W2018077834 hasRelatedWork W1532282899 @default.
- W2018077834 hasRelatedWork W1985376149 @default.
- W2018077834 hasRelatedWork W2086071107 @default.
- W2018077834 hasRelatedWork W2322672534 @default.
- W2018077834 hasRelatedWork W3161037246 @default.
- W2018077834 hasRelatedWork W3193394349 @default.
- W2018077834 hasRelatedWork W4205329978 @default.
- W2018077834 hasRelatedWork W4210408405 @default.
- W2018077834 hasRelatedWork W4245159473 @default.
- W2018077834 hasRelatedWork W904282840 @default.
- W2018077834 hasVolume "325" @default.
- W2018077834 isParatext "false" @default.
- W2018077834 isRetracted "false" @default.
- W2018077834 magId "2018077834" @default.
- W2018077834 workType "article" @default.