Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018084441> ?p ?o ?g. }
- W2018084441 endingPage "1783" @default.
- W2018084441 startingPage "1783" @default.
- W2018084441 abstract "Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO) that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells.Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE)-reduced GO (GE-rGO) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231).The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized graphene were analyzed using high-resolution scanning electron microscopy. Raman spectroscopy revealed single- and multilayer properties of GE-rGO. Atomic force microscopy images provided evidence for the formation of graphene. Furthermore, the effect of GO and GE-rGO was examined using a series of assays, such as cell viability, membrane integrity, and reactive oxygen species generation, which are key molecules involved in apoptosis. The results obtained from cell viability and lactate dehydrogenase assay suggest that GO and GE-rGO cause dose-dependent toxicity in the cells. Interestingly, it was found that biologically derived GE-rGO is more toxic to cancer cells than GO.We describe a simple, green, nontoxic, and cost-effective approach to producing graphene using mushroom extract as a reducing and stabilizing agent. The proposed method could enable synthesis of graphene with potential biological and biomedical applications such as in cancer and angiogenic disorders. To our knowledge, this is the first report using mushroom extract as a reducing agent for the synthesis of graphene. Mushroom extract can be used as a biocatalyst for the production of graphene." @default.
- W2018084441 created "2016-06-24" @default.
- W2018084441 creator A5001188270 @default.
- W2018084441 creator A5031542284 @default.
- W2018084441 creator A5047445678 @default.
- W2018084441 creator A5051210077 @default.
- W2018084441 date "2014-04-01" @default.
- W2018084441 modified "2023-10-14" @default.
- W2018084441 title "An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231)" @default.
- W2018084441 cites W1684645092 @default.
- W2018084441 cites W1964544076 @default.
- W2018084441 cites W1965210535 @default.
- W2018084441 cites W1968365176 @default.
- W2018084441 cites W1970460127 @default.
- W2018084441 cites W1973897520 @default.
- W2018084441 cites W1977791081 @default.
- W2018084441 cites W1978162855 @default.
- W2018084441 cites W1978705236 @default.
- W2018084441 cites W1980419364 @default.
- W2018084441 cites W1984192082 @default.
- W2018084441 cites W1988816036 @default.
- W2018084441 cites W1988962240 @default.
- W2018084441 cites W1990589060 @default.
- W2018084441 cites W1990710956 @default.
- W2018084441 cites W1996357647 @default.
- W2018084441 cites W1997118025 @default.
- W2018084441 cites W2001177326 @default.
- W2018084441 cites W2001431205 @default.
- W2018084441 cites W2001618763 @default.
- W2018084441 cites W2002584892 @default.
- W2018084441 cites W2003210979 @default.
- W2018084441 cites W2010971702 @default.
- W2018084441 cites W2011759111 @default.
- W2018084441 cites W2012296461 @default.
- W2018084441 cites W2012588499 @default.
- W2018084441 cites W2013328140 @default.
- W2018084441 cites W2014935324 @default.
- W2018084441 cites W2017581710 @default.
- W2018084441 cites W2021693311 @default.
- W2018084441 cites W2029285107 @default.
- W2018084441 cites W2029332976 @default.
- W2018084441 cites W2033773110 @default.
- W2018084441 cites W2041020981 @default.
- W2018084441 cites W2043987252 @default.
- W2018084441 cites W2045667857 @default.
- W2018084441 cites W2047305537 @default.
- W2018084441 cites W2053527971 @default.
- W2018084441 cites W2058074156 @default.
- W2018084441 cites W2058122340 @default.
- W2018084441 cites W2064611989 @default.
- W2018084441 cites W2065062234 @default.
- W2018084441 cites W2066036299 @default.
- W2018084441 cites W2068703527 @default.
- W2018084441 cites W2078090101 @default.
- W2018084441 cites W2081705834 @default.
- W2018084441 cites W2083566096 @default.
- W2018084441 cites W2083825812 @default.
- W2018084441 cites W2085396327 @default.
- W2018084441 cites W2087985880 @default.
- W2018084441 cites W2088693256 @default.
- W2018084441 cites W2093844373 @default.
- W2018084441 cites W2099354902 @default.
- W2018084441 cites W2102583491 @default.
- W2018084441 cites W2109966590 @default.
- W2018084441 cites W2111287508 @default.
- W2018084441 cites W2111610975 @default.
- W2018084441 cites W2114377120 @default.
- W2018084441 cites W2115296606 @default.
- W2018084441 cites W2116730433 @default.
- W2018084441 cites W2117326659 @default.
- W2018084441 cites W2122963862 @default.
- W2018084441 cites W2126941192 @default.
- W2018084441 cites W2128654538 @default.
- W2018084441 cites W2133720241 @default.
- W2018084441 cites W2135479172 @default.
- W2018084441 cites W2136334331 @default.
- W2018084441 cites W2147290521 @default.
- W2018084441 cites W2149032140 @default.
- W2018084441 cites W2149070465 @default.
- W2018084441 cites W2152685429 @default.
- W2018084441 cites W2152832683 @default.
- W2018084441 cites W2315883970 @default.
- W2018084441 cites W2324756273 @default.
- W2018084441 cites W3143380088 @default.
- W2018084441 doi "https://doi.org/10.2147/ijn.s57735" @default.
- W2018084441 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3984064" @default.
- W2018084441 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24741313" @default.
- W2018084441 hasPublicationYear "2014" @default.
- W2018084441 type Work @default.
- W2018084441 sameAs 2018084441 @default.
- W2018084441 citedByCount "65" @default.
- W2018084441 countsByYear W20180844412014 @default.
- W2018084441 countsByYear W20180844412015 @default.
- W2018084441 countsByYear W20180844412016 @default.
- W2018084441 countsByYear W20180844412017 @default.
- W2018084441 countsByYear W20180844412018 @default.
- W2018084441 countsByYear W20180844412019 @default.
- W2018084441 countsByYear W20180844412020 @default.