Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018087199> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2018087199 abstract "Purpose: The purpose of this study is to reveal how the performance of lung nodule segmentation algorithm impacts the performance of lung nodule detection, and to provide guidelines for choosing an appropriate segmentation algorithm with appropriate parameters in a computer‐aided detection (CAD) scheme. Methods: The database consisted of 85 CT scans with 111 nodules of 3 mm or larger in diameter from the standard CT lung nodule database created by the Lung Image Database Consortium. The initial nodule candidates were identified as those with strong response to a selective nodule enhancement filter. A uniform viewpoint reformation technique was applied to a three‐dimensional nodule candidate to generate 24 two‐dimensional (2D) reformatted images, which would be used to effectively distinguish between true nodules and false positives. Six different algorithms were employed to segment the initial nodule candidates in the 2D reformatted images. Finally, 2D features from the segmented areas in the 24 reformatted images were determined, selected, and classified for removal of false positives. Therefore, there were six similar CAD schemes, in which only the segmentation algorithms were different. The six segmentation algorithms included the fixed thresholding (FT), Otsu thresholding (OTSU), fuzzy C‐means (FCM), Gaussian mixture model (GMM), Chan and Vese model (CV), and local binary fitting (LBF). The mean Jaccard index and the mean absolute distance (Dmean) were employed to evaluate the performance of segmentation algorithms, and the number of false positives at a fixed sensitivity was employed to evaluate the performance of the CAD schemes. Results: For the segmentation algorithms of FT, OTSU, FCM, GMM, CV, and LBF, the highest mean Jaccard index between the segmented nodule and the ground truth were 0.601, 0.586, 0.588, 0.563, 0.543, and 0.553, respectively, and the corresponding Dmean were 1.74, 1.80, 2.32, 2.80, 3.48, and 3.18 pixels, respectively. With these segmentation results of the six segmentation algorithms, the six CAD schemes reported 4.4, 8.8, 3.4, 9.2, 13.6, and 10.4 false positives per CT scan at a sensitivity of 80%. Conclusions: When multiple algorithms are available for segmenting nodule candidates in a CAD scheme, the “optimal” segmentation algorithm did not necessarily lead to the “optimal” CAD detection performance." @default.
- W2018087199 created "2016-06-24" @default.
- W2018087199 creator A5047578156 @default.
- W2018087199 creator A5069771802 @default.
- W2018087199 date "2014-08-18" @default.
- W2018087199 modified "2023-10-09" @default.
- W2018087199 title "Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT" @default.
- W2018087199 cites W1965436314 @default.
- W2018087199 cites W1966204165 @default.
- W2018087199 cites W1971997700 @default.
- W2018087199 cites W1974165720 @default.
- W2018087199 cites W1975248527 @default.
- W2018087199 cites W1984119766 @default.
- W2018087199 cites W1992122542 @default.
- W2018087199 cites W2008428440 @default.
- W2018087199 cites W2012355247 @default.
- W2018087199 cites W2013197062 @default.
- W2018087199 cites W2041823554 @default.
- W2018087199 cites W2053589040 @default.
- W2018087199 cites W2079480962 @default.
- W2018087199 cites W2113076747 @default.
- W2018087199 cites W2116040950 @default.
- W2018087199 cites W2118867739 @default.
- W2018087199 cites W2126446504 @default.
- W2018087199 cites W2133059825 @default.
- W2018087199 cites W2139478903 @default.
- W2018087199 cites W2151695813 @default.
- W2018087199 doi "https://doi.org/10.1118/1.4892056" @default.
- W2018087199 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5148127" @default.
- W2018087199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25186393" @default.
- W2018087199 hasPublicationYear "2014" @default.
- W2018087199 type Work @default.
- W2018087199 sameAs 2018087199 @default.
- W2018087199 citedByCount "5" @default.
- W2018087199 countsByYear W20180871992017 @default.
- W2018087199 countsByYear W20180871992019 @default.
- W2018087199 countsByYear W20180871992021 @default.
- W2018087199 crossrefType "journal-article" @default.
- W2018087199 hasAuthorship W2018087199A5047578156 @default.
- W2018087199 hasAuthorship W2018087199A5069771802 @default.
- W2018087199 hasBestOaLocation W20180871992 @default.
- W2018087199 hasConcept C11413529 @default.
- W2018087199 hasConcept C115961682 @default.
- W2018087199 hasConcept C124504099 @default.
- W2018087199 hasConcept C151730666 @default.
- W2018087199 hasConcept C153180895 @default.
- W2018087199 hasConcept C154945302 @default.
- W2018087199 hasConcept C191178318 @default.
- W2018087199 hasConcept C203519979 @default.
- W2018087199 hasConcept C2776731575 @default.
- W2018087199 hasConcept C33923547 @default.
- W2018087199 hasConcept C41008148 @default.
- W2018087199 hasConcept C64869954 @default.
- W2018087199 hasConcept C86803240 @default.
- W2018087199 hasConcept C89600930 @default.
- W2018087199 hasConceptScore W2018087199C11413529 @default.
- W2018087199 hasConceptScore W2018087199C115961682 @default.
- W2018087199 hasConceptScore W2018087199C124504099 @default.
- W2018087199 hasConceptScore W2018087199C151730666 @default.
- W2018087199 hasConceptScore W2018087199C153180895 @default.
- W2018087199 hasConceptScore W2018087199C154945302 @default.
- W2018087199 hasConceptScore W2018087199C191178318 @default.
- W2018087199 hasConceptScore W2018087199C203519979 @default.
- W2018087199 hasConceptScore W2018087199C2776731575 @default.
- W2018087199 hasConceptScore W2018087199C33923547 @default.
- W2018087199 hasConceptScore W2018087199C41008148 @default.
- W2018087199 hasConceptScore W2018087199C64869954 @default.
- W2018087199 hasConceptScore W2018087199C86803240 @default.
- W2018087199 hasConceptScore W2018087199C89600930 @default.
- W2018087199 hasFunder F4320306076 @default.
- W2018087199 hasFunder F4320321001 @default.
- W2018087199 hasIssue "9" @default.
- W2018087199 hasLocation W20180871991 @default.
- W2018087199 hasLocation W20180871992 @default.
- W2018087199 hasLocation W20180871993 @default.
- W2018087199 hasLocation W20180871994 @default.
- W2018087199 hasOpenAccess W2018087199 @default.
- W2018087199 hasPrimaryLocation W20180871991 @default.
- W2018087199 hasRelatedWork W124243839 @default.
- W2018087199 hasRelatedWork W2009028679 @default.
- W2018087199 hasRelatedWork W2020103936 @default.
- W2018087199 hasRelatedWork W2115791626 @default.
- W2018087199 hasRelatedWork W2347731544 @default.
- W2018087199 hasRelatedWork W2411367154 @default.
- W2018087199 hasRelatedWork W2441762250 @default.
- W2018087199 hasRelatedWork W2757003988 @default.
- W2018087199 hasRelatedWork W3015391679 @default.
- W2018087199 hasRelatedWork W3116883888 @default.
- W2018087199 hasVolume "41" @default.
- W2018087199 isParatext "false" @default.
- W2018087199 isRetracted "false" @default.
- W2018087199 magId "2018087199" @default.
- W2018087199 workType "article" @default.