Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018094472> ?p ?o ?g. }
- W2018094472 endingPage "2207" @default.
- W2018094472 startingPage "2188" @default.
- W2018094472 abstract "We consider the tensor product V=(CN)⊗n of the vector representation of glN and its weight decomposition V=⊕λ=(λ1,…,λN)V[λ]. For λ=(λ1⩾⋯⩾λN), the trivial bundle V[λ]×Cn→Cn has a subbundle of q-conformal blocks at level ℓ, where ℓ=λ1−λN if λ1−λN>0 and ℓ=1 if λ1−λN=0. We construct a polynomial section Iλ(z1,…,zn,h) of the subbundle. The section is the main object of the paper. We identify the section with the generating function Jλ(z1,…,zn,h) of the extended Joseph polynomials of orbital varieties, defined in Di Francesco and Zinn-Justin (2005) [11] and Knutson and Zinn-Justin (2009) [12]. For ℓ=1, we show that the subbundle of q-conformal blocks has rank 1 and Iλ(z1,…,zn,h) is flat with respect to the quantum Knizhnik–Zamolodchikov discrete connection. For N=2 and ℓ=1, we represent our polynomial as a multidimensional q-hypergeometric integral and obtain a q-Selberg type identity, which says that the integral is an explicit polynomial." @default.
- W2018094472 created "2016-06-24" @default.
- W2018094472 creator A5006276965 @default.
- W2018094472 creator A5012296700 @default.
- W2018094472 creator A5034010684 @default.
- W2018094472 creator A5061956834 @default.
- W2018094472 date "2012-11-01" @default.
- W2018094472 modified "2023-09-30" @default.
- W2018094472 title "Extended Joseph polynomials, quantized conformal blocks, and aq-Selberg type integral" @default.
- W2018094472 cites W1582175618 @default.
- W2018094472 cites W1980167266 @default.
- W2018094472 cites W1990991669 @default.
- W2018094472 cites W1992006307 @default.
- W2018094472 cites W1994253047 @default.
- W2018094472 cites W2041852740 @default.
- W2018094472 cites W2053457854 @default.
- W2018094472 cites W2061132437 @default.
- W2018094472 cites W2083269465 @default.
- W2018094472 cites W2104967285 @default.
- W2018094472 cites W2108491571 @default.
- W2018094472 cites W2963327864 @default.
- W2018094472 cites W2963489576 @default.
- W2018094472 cites W2964201612 @default.
- W2018094472 cites W3100345539 @default.
- W2018094472 cites W3103518105 @default.
- W2018094472 cites W3123764487 @default.
- W2018094472 cites W3195621125 @default.
- W2018094472 cites W4233163683 @default.
- W2018094472 cites W4254413747 @default.
- W2018094472 doi "https://doi.org/10.1016/j.geomphys.2012.06.008" @default.
- W2018094472 hasPublicationYear "2012" @default.
- W2018094472 type Work @default.
- W2018094472 sameAs 2018094472 @default.
- W2018094472 citedByCount "15" @default.
- W2018094472 countsByYear W20180944722012 @default.
- W2018094472 countsByYear W20180944722014 @default.
- W2018094472 countsByYear W20180944722015 @default.
- W2018094472 countsByYear W20180944722016 @default.
- W2018094472 countsByYear W20180944722018 @default.
- W2018094472 countsByYear W20180944722020 @default.
- W2018094472 countsByYear W20180944722021 @default.
- W2018094472 countsByYear W20180944722022 @default.
- W2018094472 crossrefType "journal-article" @default.
- W2018094472 hasAuthorship W2018094472A5006276965 @default.
- W2018094472 hasAuthorship W2018094472A5012296700 @default.
- W2018094472 hasAuthorship W2018094472A5034010684 @default.
- W2018094472 hasAuthorship W2018094472A5061956834 @default.
- W2018094472 hasBestOaLocation W20180944721 @default.
- W2018094472 hasConcept C10628310 @default.
- W2018094472 hasConcept C112698675 @default.
- W2018094472 hasConcept C114614502 @default.
- W2018094472 hasConcept C13355873 @default.
- W2018094472 hasConcept C134306372 @default.
- W2018094472 hasConcept C136119220 @default.
- W2018094472 hasConcept C144133560 @default.
- W2018094472 hasConcept C171686973 @default.
- W2018094472 hasConcept C18903297 @default.
- W2018094472 hasConcept C202444582 @default.
- W2018094472 hasConcept C2524010 @default.
- W2018094472 hasConcept C2777299769 @default.
- W2018094472 hasConcept C2780129039 @default.
- W2018094472 hasConcept C33923547 @default.
- W2018094472 hasConcept C51255310 @default.
- W2018094472 hasConcept C86607863 @default.
- W2018094472 hasConcept C86803240 @default.
- W2018094472 hasConcept C90119067 @default.
- W2018094472 hasConcept C90673727 @default.
- W2018094472 hasConcept C95857938 @default.
- W2018094472 hasConcept C98214594 @default.
- W2018094472 hasConceptScore W2018094472C10628310 @default.
- W2018094472 hasConceptScore W2018094472C112698675 @default.
- W2018094472 hasConceptScore W2018094472C114614502 @default.
- W2018094472 hasConceptScore W2018094472C13355873 @default.
- W2018094472 hasConceptScore W2018094472C134306372 @default.
- W2018094472 hasConceptScore W2018094472C136119220 @default.
- W2018094472 hasConceptScore W2018094472C144133560 @default.
- W2018094472 hasConceptScore W2018094472C171686973 @default.
- W2018094472 hasConceptScore W2018094472C18903297 @default.
- W2018094472 hasConceptScore W2018094472C202444582 @default.
- W2018094472 hasConceptScore W2018094472C2524010 @default.
- W2018094472 hasConceptScore W2018094472C2777299769 @default.
- W2018094472 hasConceptScore W2018094472C2780129039 @default.
- W2018094472 hasConceptScore W2018094472C33923547 @default.
- W2018094472 hasConceptScore W2018094472C51255310 @default.
- W2018094472 hasConceptScore W2018094472C86607863 @default.
- W2018094472 hasConceptScore W2018094472C86803240 @default.
- W2018094472 hasConceptScore W2018094472C90119067 @default.
- W2018094472 hasConceptScore W2018094472C90673727 @default.
- W2018094472 hasConceptScore W2018094472C95857938 @default.
- W2018094472 hasConceptScore W2018094472C98214594 @default.
- W2018094472 hasIssue "11" @default.
- W2018094472 hasLocation W20180944721 @default.
- W2018094472 hasLocation W20180944722 @default.
- W2018094472 hasOpenAccess W2018094472 @default.
- W2018094472 hasPrimaryLocation W20180944721 @default.
- W2018094472 hasRelatedWork W1912064545 @default.
- W2018094472 hasRelatedWork W2049848310 @default.
- W2018094472 hasRelatedWork W2079328819 @default.