Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018104927> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2018104927 endingPage "215" @default.
- W2018104927 startingPage "201" @default.
- W2018104927 abstract "One of the most challenging tasks in the development of recommender systems is the design of techniques that can infer the preferences of users through the observation of their actions. Those preferences are essential to obtain a satisfactory accuracy in the recommendations. Preference learning is especially difficult when attributes of different kinds (numeric or linguistic) intervene in the problem, and even more when they take multiple possible values. This paper presents an approach to learn user preferences over numeric and multi-valued linguistic attributes through the analysis of the user selections. The learning algorithm has been tested with real data on restaurants, showing a very good performance." @default.
- W2018104927 created "2016-06-24" @default.
- W2018104927 creator A5022287430 @default.
- W2018104927 creator A5041033113 @default.
- W2018104927 creator A5061732574 @default.
- W2018104927 date "2014-01-01" @default.
- W2018104927 modified "2023-09-27" @default.
- W2018104927 title "Automatic preference learning on numeric and multi-valued categorical attributes" @default.
- W2018104927 cites W130089679 @default.
- W2018104927 cites W1966539084 @default.
- W2018104927 cites W1970339973 @default.
- W2018104927 cites W2002463121 @default.
- W2018104927 cites W2034228039 @default.
- W2018104927 cites W2040522713 @default.
- W2018104927 cites W2058777262 @default.
- W2018104927 cites W2065357870 @default.
- W2018104927 cites W2069870183 @default.
- W2018104927 cites W2084127140 @default.
- W2018104927 cites W2122946987 @default.
- W2018104927 cites W2138022968 @default.
- W2018104927 cites W2143180022 @default.
- W2018104927 cites W2147654806 @default.
- W2018104927 cites W2153889650 @default.
- W2018104927 cites W2159113915 @default.
- W2018104927 cites W2170709423 @default.
- W2018104927 cites W4230615173 @default.
- W2018104927 cites W4241676240 @default.
- W2018104927 cites W2065643326 @default.
- W2018104927 cites W2080946205 @default.
- W2018104927 doi "https://doi.org/10.1016/j.knosys.2013.11.012" @default.
- W2018104927 hasPublicationYear "2014" @default.
- W2018104927 type Work @default.
- W2018104927 sameAs 2018104927 @default.
- W2018104927 citedByCount "15" @default.
- W2018104927 countsByYear W20181049272014 @default.
- W2018104927 countsByYear W20181049272015 @default.
- W2018104927 countsByYear W20181049272016 @default.
- W2018104927 countsByYear W20181049272019 @default.
- W2018104927 countsByYear W20181049272020 @default.
- W2018104927 countsByYear W20181049272021 @default.
- W2018104927 crossrefType "journal-article" @default.
- W2018104927 hasAuthorship W2018104927A5022287430 @default.
- W2018104927 hasAuthorship W2018104927A5041033113 @default.
- W2018104927 hasAuthorship W2018104927A5061732574 @default.
- W2018104927 hasConcept C105795698 @default.
- W2018104927 hasConcept C119857082 @default.
- W2018104927 hasConcept C154945302 @default.
- W2018104927 hasConcept C181204326 @default.
- W2018104927 hasConcept C204321447 @default.
- W2018104927 hasConcept C2781249084 @default.
- W2018104927 hasConcept C33923547 @default.
- W2018104927 hasConcept C41008148 @default.
- W2018104927 hasConcept C5274069 @default.
- W2018104927 hasConcept C557471498 @default.
- W2018104927 hasConceptScore W2018104927C105795698 @default.
- W2018104927 hasConceptScore W2018104927C119857082 @default.
- W2018104927 hasConceptScore W2018104927C154945302 @default.
- W2018104927 hasConceptScore W2018104927C181204326 @default.
- W2018104927 hasConceptScore W2018104927C204321447 @default.
- W2018104927 hasConceptScore W2018104927C2781249084 @default.
- W2018104927 hasConceptScore W2018104927C33923547 @default.
- W2018104927 hasConceptScore W2018104927C41008148 @default.
- W2018104927 hasConceptScore W2018104927C5274069 @default.
- W2018104927 hasConceptScore W2018104927C557471498 @default.
- W2018104927 hasLocation W20181049271 @default.
- W2018104927 hasOpenAccess W2018104927 @default.
- W2018104927 hasPrimaryLocation W20181049271 @default.
- W2018104927 hasRelatedWork W149611507 @default.
- W2018104927 hasRelatedWork W2009070237 @default.
- W2018104927 hasRelatedWork W2333049752 @default.
- W2018104927 hasRelatedWork W2954428433 @default.
- W2018104927 hasRelatedWork W3034418242 @default.
- W2018104927 hasRelatedWork W3107474891 @default.
- W2018104927 hasRelatedWork W3126212998 @default.
- W2018104927 hasRelatedWork W4200207182 @default.
- W2018104927 hasRelatedWork W4220812971 @default.
- W2018104927 hasRelatedWork W4281387587 @default.
- W2018104927 hasVolume "56" @default.
- W2018104927 isParatext "false" @default.
- W2018104927 isRetracted "false" @default.
- W2018104927 magId "2018104927" @default.
- W2018104927 workType "article" @default.