Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018115306> ?p ?o ?g. }
- W2018115306 endingPage "1412" @default.
- W2018115306 startingPage "1412" @default.
- W2018115306 abstract "Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) combined with multivariate discriminant analysis was employed to classify colors of rapeseeds. A total of 129 rapeseed varieties representing three colors (black, reddish and mottled-yellow) were scanned in the range of 500–4000 cm−1. A Savitzky–Golay algorithm was used for the spectral pretreatment. Principal components analysis (PCA) gave an overview of sample distribution in the score space of principal components. The whole sample set was divided into calibration and prediction sets, according to the Kennard–Stone algorithm. Classification models were developed using linear discriminant analysis combined with principal components analysis (PCA-LDA), partial least square discriminant analysis (PLS-DA), and support vector machine (SVM). Results showed that the best accuracy was achieved by the SVM model, with the overall error rates (ERs) of 1.1% and 2.5%, in calibration and prediction sets, respectively. Besides, the PLS-DA model performed slightly better than the PCA-LDA model. This work had demonstrated the good potential of FTIR-PAS to classify rapeseed colors." @default.
- W2018115306 created "2016-06-24" @default.
- W2018115306 creator A5027534949 @default.
- W2018115306 creator A5034484688 @default.
- W2018115306 creator A5035462418 @default.
- W2018115306 creator A5079156452 @default.
- W2018115306 date "2014-01-01" @default.
- W2018115306 modified "2023-09-25" @default.
- W2018115306 title "Classification of rapeseed colors using Fourier transform mid-infrared photoacoustic spectroscopy" @default.
- W2018115306 cites W1973240012 @default.
- W2018115306 cites W1974766427 @default.
- W2018115306 cites W1976193176 @default.
- W2018115306 cites W1979348325 @default.
- W2018115306 cites W1981793621 @default.
- W2018115306 cites W1990992764 @default.
- W2018115306 cites W1992045220 @default.
- W2018115306 cites W1995210144 @default.
- W2018115306 cites W2004071803 @default.
- W2018115306 cites W2015259293 @default.
- W2018115306 cites W2017422910 @default.
- W2018115306 cites W2019882977 @default.
- W2018115306 cites W2021651928 @default.
- W2018115306 cites W2030402758 @default.
- W2018115306 cites W2045256553 @default.
- W2018115306 cites W2047176973 @default.
- W2018115306 cites W2047251329 @default.
- W2018115306 cites W2047496179 @default.
- W2018115306 cites W2049527492 @default.
- W2018115306 cites W2057219090 @default.
- W2018115306 cites W2058111307 @default.
- W2018115306 cites W2061998420 @default.
- W2018115306 cites W2064420178 @default.
- W2018115306 cites W2066490160 @default.
- W2018115306 cites W2068041227 @default.
- W2018115306 cites W2070439790 @default.
- W2018115306 cites W2071198648 @default.
- W2018115306 cites W2074699424 @default.
- W2018115306 cites W2080226666 @default.
- W2018115306 cites W2091828034 @default.
- W2018115306 cites W2091908601 @default.
- W2018115306 cites W2104617436 @default.
- W2018115306 cites W2105250379 @default.
- W2018115306 cites W2109606373 @default.
- W2018115306 cites W2109788341 @default.
- W2018115306 cites W2110652811 @default.
- W2018115306 cites W2119411870 @default.
- W2018115306 cites W2124583192 @default.
- W2018115306 cites W2161167470 @default.
- W2018115306 cites W2164583936 @default.
- W2018115306 cites W216530421 @default.
- W2018115306 cites W2249923388 @default.
- W2018115306 cites W4361798653 @default.
- W2018115306 doi "https://doi.org/10.1039/c3ay41646a" @default.
- W2018115306 hasPublicationYear "2014" @default.
- W2018115306 type Work @default.
- W2018115306 sameAs 2018115306 @default.
- W2018115306 citedByCount "3" @default.
- W2018115306 countsByYear W20181153062014 @default.
- W2018115306 countsByYear W20181153062016 @default.
- W2018115306 countsByYear W20181153062018 @default.
- W2018115306 crossrefType "journal-article" @default.
- W2018115306 hasAuthorship W2018115306A5027534949 @default.
- W2018115306 hasAuthorship W2018115306A5034484688 @default.
- W2018115306 hasAuthorship W2018115306A5035462418 @default.
- W2018115306 hasAuthorship W2018115306A5079156452 @default.
- W2018115306 hasConcept C102519508 @default.
- W2018115306 hasConcept C105795698 @default.
- W2018115306 hasConcept C113196181 @default.
- W2018115306 hasConcept C120665830 @default.
- W2018115306 hasConcept C121332964 @default.
- W2018115306 hasConcept C12267149 @default.
- W2018115306 hasConcept C134306372 @default.
- W2018115306 hasConcept C153180895 @default.
- W2018115306 hasConcept C154945302 @default.
- W2018115306 hasConcept C160892712 @default.
- W2018115306 hasConcept C165838908 @default.
- W2018115306 hasConcept C185592680 @default.
- W2018115306 hasConcept C22354355 @default.
- W2018115306 hasConcept C27438332 @default.
- W2018115306 hasConcept C2777286522 @default.
- W2018115306 hasConcept C32891209 @default.
- W2018115306 hasConcept C33923547 @default.
- W2018115306 hasConcept C41008148 @default.
- W2018115306 hasConcept C43617362 @default.
- W2018115306 hasConcept C62520636 @default.
- W2018115306 hasConcept C69738355 @default.
- W2018115306 hasConceptScore W2018115306C102519508 @default.
- W2018115306 hasConceptScore W2018115306C105795698 @default.
- W2018115306 hasConceptScore W2018115306C113196181 @default.
- W2018115306 hasConceptScore W2018115306C120665830 @default.
- W2018115306 hasConceptScore W2018115306C121332964 @default.
- W2018115306 hasConceptScore W2018115306C12267149 @default.
- W2018115306 hasConceptScore W2018115306C134306372 @default.
- W2018115306 hasConceptScore W2018115306C153180895 @default.
- W2018115306 hasConceptScore W2018115306C154945302 @default.
- W2018115306 hasConceptScore W2018115306C160892712 @default.
- W2018115306 hasConceptScore W2018115306C165838908 @default.
- W2018115306 hasConceptScore W2018115306C185592680 @default.