Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018124448> ?p ?o ?g. }
- W2018124448 endingPage "155" @default.
- W2018124448 startingPage "155" @default.
- W2018124448 abstract "Review1 January 1969Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency in GoutWILLIAM N. KELLEY, M.D., MARTIN L. GREENE, M.D., FREDERICK M. ROSENBLOOM, M.D., J. FRANK HENDERSON, PH.D., J. E. SEEGMILLER, M.D.WILLIAM N. KELLEY, M.D.Search for more papers by this author, MARTIN L. GREENE, M.D.Search for more papers by this author, FREDERICK M. ROSENBLOOM, M.D.Search for more papers by this author, J. FRANK HENDERSON, PH.D.Search for more papers by this author, J. E. SEEGMILLER, M.D.Search for more papers by this authorAuthor, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-70-1-155 SectionsAboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail ExcerptINTRODUCTIONSophisticated biochemical studies in recent years have revealed that the regulation of intracellular metabolism is a logical, orderly, and intricate process. Control of enzyme activity, as well as the rate of enzyme synthesis and catabolism, provide regulatory mechanisms important to the economy of the cell. It has become apparent that some human disorders may indeed result from genetically determined alterations of these normal control mechanisms (1, 2).A substantial proportion of gouty patients have a metabolic defect characterized by the synthesis of abnormally large quantities of uric acid that in turn is the result of an excessive rate of...References1. PARKERBEARN WCAG: Application of genetic regulatory mechanisms to human genetics. Amer. J. Med. 34: 680, 1963. CrossrefMedlineGoogle Scholar2. STANBURYWYNGAARDENFREDRICKSON JBJBDS: Inherited variation and metabolic abnormality, in The Metabolic Basis of Inherited Disease, 2nd ed., edited by STANBURY, J. B., WYNGAARDEN, J. B., FREDRICKSON, D. S., McGraw-Hill Book Co., Inc., 1966, p. 3. Google Scholar3. BENEDICTROCHEYuBIENGUTMANSTETTEN JDMTFEMABD: Incorporation of glycine nitrogen into uric acid in normal and gouty man. Metabolism 1: 3, 1952. MedlineGoogle Scholar4. GUTMANYUBLACKYALOWBERSON ABTFHRSSA: Incorporation of glycine-1-14C, glycine-2-14C and glycine-15N into uric acid in normal and gouty subjects. Amer. J. Med. 25: 917, 1958. CrossrefMedlineGoogle Scholar5. WYNGAARDEN JB: Overproduction of uric acid as the cause of hyperuricemia in primary gout. J. Clin. Invest. 36: 1508, 1957. CrossrefMedlineGoogle Scholar6. SEEGMILLERGRAYZELLASTERLIDDLE JEAILL: Uric acid production in gout. J. Clin. Invest. 40: 1304, 1961. CrossrefMedlineGoogle Scholar7. WYNGAARDEN JG: Gout, in The Metabolic Basis of Inherited Disease, 2nd ed., edited by STANBURY, J. B., WYNGAARDEN, J. B., FREDRICKSON, D. S., McGraw-Hill Book Co., Inc., New York, 1966, p. 667. Google Scholar8. GUTMANYU ABTF: Uric acid metabolism in normal man and in primary gout. New Eng. J. Med. 273: 252, 313, 1965. CrossrefGoogle Scholar9. SEEGMILLERLASTERHOWELL JELRR: Biochemistry of uric acid and its relation to gout. New Eng. J. Med. 268: 712, 764, 821, 1963. CrossrefMedlineGoogle Scholar10. JACOBMONOD FJ: Genetic regulatory mechanisms in the synthesis of proteins. J. Molec. Biol. 3: 318, 1961. CrossrefMedlineGoogle Scholar11. ROSENBLOOMHENDERSONKELLEYSEEGMILLER FMJFWNJE: Decreased sensitivity to feedback inhibition in adult gout with purine overproduction (abstract). Clin. Res. 16: 350, 1968. Google Scholar12. HENDERSONROSENBLOOMKELLEYSEEGMILLER JFFMWNJE: Variations in purine metabolism of cultured fibroblasts from patients with gout. J. Clin. Invest. 47: 1511, 1968. CrossrefMedlineGoogle Scholar13. GUTMANYU ABTF: An abnormality of glutamine metabolism in primary gout. Amer. J. Med. 35: 820, 1963. CrossrefMedlineGoogle Scholar14. POLLAKMATTENHEIMER VEH: Glutaminase activity in the kidney in gout. J. Lab. Clin. Med. 66: 564, 1965. MedlineGoogle Scholar15. SEEGMILLERROSENBLOOMKELLEY JEFMWN: An enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155: 1682, 1967. CrossrefMedlineGoogle Scholar16. LESCHNYHAN MWL: A familial disorder of uric acid metabolism and central nervous system function. Amer. J. Med. 36: 561, 1964. CrossrefMedlineGoogle Scholar17. KELLEYROSENBLOOMHENDERSONSEEGMILLER WNFMJFJE: A specific enzyme defect in gout associated with overproduction of uric acid. Proc. Nat. Acad. Sci. USA 57: 1735, 1967. CrossrefMedlineGoogle Scholar18. TALBOTT JH: Gout, 3rd ed., Grune & Stratton, Inc., New York, 1967. Google Scholar19. MULLERBAUER AFW: Uric acid production in normal and gouty subjects determined by N15 labeled glycine. Proc. Soc. Exp. Biol. Med. 82: 47, 1953. CrossrefMedlineGoogle Scholar20. BENEDICTFORSHAMSTETTEN JDPHD: The metabolism of uric acid in the normal and gouty human studied with the aid of isotopic uric acid. J. Biol. Chem. 181: 183, 1952. CrossrefGoogle Scholar21. LIDDLESEEGMILLERLASTER LJEL: The enzymatic spectrophotometric method for determination of uric acid. J. Lab. Clin. Med. 54: 903, 1959. MedlineGoogle Scholar22. KELLEYROSENBLOOMSEEGMILLER WNFMJE: The effects of azathioprine (imuran) on purine synthesis in clinical disorders of purine metabolism. J. Clin. Invest. 46: 1518, 1967. CrossrefMedlineGoogle Scholar23. KLINENBERGGOLDFINGERBRADLEYSEEGMILLER JRWKHJE, An enzymatic spectrophotometric method for the determination of xanthine and hypoxanthine. Clin. Chem. 13: 834, 1967. CrossrefMedlineGoogle Scholar24. ROSENBLOOMKELLEYMILLERHENDERSONSEEGMILLER FMWNJJFJE: Inherited disorder of purine metabolism: correlation between central nervous system dysfunction and biochemical defects. JAMA 202: 175, 1967. CrossrefMedlineGoogle Scholar25. TAUSSKY HH: A microcolorimetric determination of creatinine in urine by the Jaffee reaction. J. Biol. Chem. 208: 853, 1954. CrossrefMedlineGoogle Scholar26. KELLEYROSENBLOOMMILLERSEEGMILLER WNFMJJE: An enzymatic basis for variation in response to allopurinol. New Eng. J. Med. 278: 286, 1968. CrossrefGoogle Scholar27. ROSENBLOOMHENDERSONCALDWELLKELLEYSEEGMILLER FMJFICWNJE: Biochemical basis of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. J. Biol. Chem. 243: 1166, 1968. CrossrefMedlineGoogle Scholar28. KELLEYHENDERSONROSENBLOOMSEEGMILLER WNJRFMJE: Physical properties of normal and mutant human hypoxanthine-guanine phosphoribosyltransferase. In preparation. Google Scholar29. FREDRICKSONLEVYLEES DSRIRS: Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. New Eng. J. Med. 276: 32, 94, 148, 215, 273, 1967. CrossrefGoogle Scholar30. DECKERVANDEMAN JLPR: Renal calculi preceding gouty arthritis in a child. Amer. J. Med. 32: 805, 1962. CrossrefMedlineGoogle Scholar31. YUGUTMAN TFAB: Effect of allopurinol (4-hydroxypyrazolo-(3, 4-d) pyrimidine) on serum and urinary uric acid in primary and secondary gout. Amer. J. Med. 37: 885, 1964. CrossrefMedlineGoogle Scholar32. BLUESTONE R: Personal communication. Google Scholar33. ROSENTHALGABALLAHRAFELSON IMSM: Metabolic studies in a young child with elevated serum uric acid levels. Amer. J. Dis. Child. 102: 631, 1961. Google Scholar34. ROSENTHALGABALLAHRAFELSON IMSME: Gout in infancy manifested by renal failure. Pediatrics 33: 251, 1964. MedlineGoogle Scholar35. ROSENTHAL IM: Personal communication. Google Scholar36. SORENSEN LB: The pathogenesis of gout. Arch. Intern. Med. (Chicago) 109: 379, 1962. CrossrefMedlineGoogle Scholar37. BROCKMAN RW: Resistance to purine antagonists in experimental leukemia systems. Cancer Res. 25: 1596, 1965. MedlineGoogle Scholar38. KELLEYROSENBLOOMHENDERSONSEEGMILLER WNFMJFJE: Xanthine phosphoribosyltransferase in man: relationship to hypoxanthine-guanine phospheribosyltransferase. Biochem. Biophys. Res. Commun. 28: 340, 1967. CrossrefMedlineGoogle Scholar39. KELLEY WN: Hypoxanthine-guanine phosphoribosyltransferase deficiency in the Lesch-Nyhan syndrome and gout. Fed. Proc. 27: 1047, 1968. MedlineGoogle Scholar40. ROSENBLOOMHENDERSONKELLEYSEEGMILLER FMJFWNJE: Accelerated purine biosynthesis de novo in skin fibroblasts deficient in hypoxanthine-guanine phosphoribosyltransferase. Biochem. Biophys. Acta 166: 258, 1968. MedlineGoogle Scholar41. KALLEGOTSABRAMSON GPJSC: Purine nucleotide pyrophosphorylases of S. typhimurium. Fed. Proc. 19: 310, 1960. Google Scholar42. FLAKS JG: Nucleotide synthesis from 5-phosphoribosylpyrophosphate, in Methods in Enzymology, vol. VI, edited by COLOWICK, S. P., KAPLAN, N. O., Academic Press, Inc., Publishers, New York, 1963, pp. 136-158. Google Scholar43. HENDERSONBROXKELLEYROSENBLOOMSEEGMILLER JRLWWNFMJE: Kinetics of hypoxanthine-guanine phosphoribosyltransferase. J. Biol. Chem. 243: 2514, 1968. CrossrefMedlineGoogle Scholar44. HENDERSONMILLERKELLEYROSENBLOOMSEEGMILLER JFHRWNFMJE: Kinetic studies of human mutant erythrocyte adenine phosphoribosyltransferase. Canad. J. Biochem. 46: 703, 1968. CrossrefMedlineGoogle Scholar45. HENDERSONKELLEYROSENBLOOMSEEGMILLER JFWNFMJE: Inheritance of purine phosphoribosyltransferases in man. Amer. J. Hum. Genet.: in press. Google Scholar46. HENDERSON JF: Rational approaches to the treatment of the Lesch-Nyhan syndrome. Fed. Proc. 27: 1105, 1968. MedlineGoogle Scholar47. KELLEYLEVYROSENBLOOMHENDERSONSEEGMILLER WNRIRMJFJE: Adenine phosphoribosyltransferase deficiency: a previously undescribed genetic defect in man. J. Clin. Invest. 47: 2281, 1968. CrossrefMedlineGoogle Scholar48. KORNBERGLIEBERMANSIMMS AIES: Enzymatic synthesis of purine nucleotides. J. Biol. Chem. 215: 417, 1955. CrossrefMedlineGoogle Scholar49. KORNREMYWASILEYKOBUCHANAN EDCNHCJM: Biosynthesis of the purines. VII. Synthesis of nucleotides from bases by partially purified enzymes. J. Biol. Chem. 217: 875, 1955. CrossrefMedlineGoogle Scholar50. BUCHANANHARTMAN JMSC: Enzymatic reactions in synthesis of purine. Advances Enzym. 21: 199, 1959. Google Scholar51. BUCHANAN JM: Enzymatic synthesis of purine nucleotides. Harvey Lect. 54: 104, 1960. Google Scholar52. NIERLICHMAGASANIK DPB: Regulation of purine ribonucleotide synthesis by end product inhibition. The effect of adenine and guanine ribonucleotides on the 5′-phosphoribosylpyrophosphate amidotransferase of Aerobacter aerogenes. J. Biol. Chem. 240: 358, 1965. CrossrefMedlineGoogle Scholar53. WYNGAARDENASHTON JBDM: The regulation of activity of phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides; a potential feedback control of purine biosynthesis. J. Biol. Chem. 234: 1492, 1959. CrossrefMedlineGoogle Scholar54. CASKEYASHTONWYNGAARDEN CTDMJB: The enzymology of feedback inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides. J. Biol. Chem. 239: 2570, 1964. CrossrefMedlineGoogle Scholar55. HENDERSON JF: Feedback inhibition of purine biosynthesis in ascites tumor cells. J. Biol. Chem. 237: 2631, 1962. CrossrefMedlineGoogle Scholar56. HOWARDAPPEL WJSH: Control of purine biosynthesis: FGAR amidotransferase (abstract). Clin. Res. 16: 344, 1968. Google Scholar57. MAGASANIKKARIHIAN BD: Purine nucleotide cycles and their metabolic role. J. Biol. Chem. 235: 2672, 1960. CrossrefMedlineGoogle Scholar58. MAGERMAGASANIK JB: Guanosine 5′-phosphate reductase and its role in the interconversion of purine nucleotides. J. Biol. Chem. 235: 1474, 1960. CrossrefMedlineGoogle Scholar59. WYNGAARDENGREENLAND JBRA: The inhibition of succinadenylate kinosynthetase of Escherichia coli by adenosine and guanosine 5′-monophosphates. J. Biol. Chem. 238: 1054, 1963. CrossrefMedlineGoogle Scholar60. HENDERSON JF: Kinetic properties of hypoxanthine-guanine and adenine phosphoribosyltransferases. Fed. Proc. 27: 1053, 1968. MedlineGoogle Scholar61. NIERLICHMAGASANIK DPB: Control by repression of purine biosynthetic enzymes in Aerobacter aerogenes. Fed. Proc. 22: 476, 1963. Google Scholar62. MOMOSENISHIKAWAKATSUJJA HHN: Genetic and biochemical studies on 5′ nucleotide fermentation. II. Repression of enzyme formation in purine nucleotide biosynthesis in Bacillus subtilis and derivation of derepressed mutants. J. Gen. Appl. Microbiol. 11: 211, 1965. CrossrefGoogle Scholar63. REAMFRIEND GHC: Phosphoribosylamidotransferase regulation of activity in virus-induced murine leukemia by purine nucleotides. Science 157: 1203, 1967. CrossrefMedlineGoogle Scholar64. SEEGMILLERKLINENBERGWATTS JEJRRW: Suppression of glycine-15N incorporation into urinary uric acid by adenine-8-13C in normal and gouty subjects. J. Clin. Invest. 47: 1193, 1968. CrossrefMedlineGoogle Scholar65. HENDERSONMERCER JFNJ: Feedback inhibition of purine biosynthesis de novo in mouse tissue in vivo. Nature (London) 212: 507, 1966. CrossrefMedlineGoogle Scholar66. KELLEYHENDERSONROSENBLOOMSEEGMILLER WNJFFMJE: Six-methylmercaptopurine ribonucleoside in human hypoxanthine-guanine phosphoribosyltransferase deficiency. In preparation. Google Scholar67. ALEPAHOWELLKLINENBERGSEEGMILLER FPRRJRJE: Relationships between glycogen storage disease and tophaceous gout. Amer. J. Med. 42: 58, 1967. CrossrefMedlineGoogle Scholar68. JAKOVICSORENSEN SLB: Studies of uric acid metabolism in glycogen storage disease associated with gouty arthritis. Arthritis Rheum. 10: 129, 1967. CrossrefMedlineGoogle Scholar69. KELLEYROSENBLOOMSEEGMILLERHOWELL WNFMJERR: Excessive uric acid production in type I glycogen storage disease. J. Pediat. 72: 488, 1968. CrossrefMedlineGoogle Scholar70. BENEDICTYUBIENGUTMANSTETTEN JDTFEJABD: A further study of the utilization of dietary glycine nitrogen for uric acid synthesis in gout. J. Clin. Invest. 32: 775, 1953. CrossrefMedlineGoogle Scholar71. WYNGAARDEN JB: Intermeditary purine metabolism and the metabolic defects of gout. Metabolism 6: 244, 1957. MedlineGoogle Scholar72. WEISSMANBROMBERGGUTMAN BPAGB: The purine bases of human urine. II. Semiquantitative estimation and isotope incorporation. J. Biol. Chem. 224: 423, 1957. CrossrefMedlineGoogle Scholar73. KAUFMANGREENESEEGMILLER JMMLJE: Urinary uric acid/creatinine ratio—A screening test for inherited disorders of purine metabolism. J. Pediat. 73: 583, 1968. CrossrefMedlineGoogle Scholar74. YUGUTMAN TFAB: Uric acid nephrolithiasis in gout: predisposing factors. Ann. Intern. Med. 67: 1133, 1967. LinkGoogle Scholar75. HENNEMANWALLACHDEMPSEY PHSEF: The metabolic defect responsible for uric acid stone formation. J. Clin. Invest. 41: 537, 1962. CrossrefMedlineGoogle Scholar76. METCALFE-GIBSONMCCALLUMMORRISONWRONG AFMRBO: Urinary excretion of hydrogen ion in patients with uric acid calculi. Clin. Sci. 28: 325, 1965. MedlineGoogle Scholar77. BARZELSPERLINGFRANKDEVRIES USOMA: Renal ammonium excretion and urinary pH in idiopathic uric acid lithiasis. J. Urol. 92: 1, 1964. CrossrefMedlineGoogle Scholar78. SEEGMILLERFRAZIER JERD: Biochemical considerations of the renal damage of gout. Ann. Rheum. Dis. 25: 668, 1966. CrossrefMedlineGoogle Scholar79. ALVSAKER JO: Uric acid in human plasma. IV. Investigations on the interactions between urate and the macromolecular fraction of plasma from healthy individuals and patients with diseases associated with hyperuricemia. Scand. J. Clin. Lab. Invest. 17: 476, 1965. CrossrefMedlineGoogle Scholar80. SPERLINGDEVRIESKEDEM OAO: Studies on the etiology of uric acid lithiasis. IV. Urinary non-dialyzable substances in idiopathic uric acid lithiasis. J. Urol. 94: 286, 1965. CrossrefMedlineGoogle Scholar81. GONICKRUBINIGLEASONSOMMERS HCMEIOSC: The renal lesion in gout. Ann. Intern. Med. 62: 667, 1965. LinkGoogle Scholar82. BROWNMALLORY JGK: Renal changes in gout. New Eng. J. Med. 243: 325, 1950. CrossrefMedlineGoogle Scholar83. TALBOTTTERPLAN JHKL: The kidney in gout. Medicine (Balt.) 39: 405, 1960. CrossrefMedlineGoogle Scholar84. DUNCANWAKIMWARD HKGLE: Renal lesions resulting from induced hyperuricemia in animals. Proc. Staff Mayo Clin. 38: 411, 1963. MedlineGoogle Scholar85. TURNERFRANKVAN AUSDALBALLET REMJDAJ: Some aspects of the epidemiology of gout. Sex and race incidence. Arch. Intern. Med. (Chicago) 106: 400, 1960. CrossrefMedlineGoogle Scholar86. RAKICVALKENBURGDAVIDSONENGELSMIDDELSENNEELDUFF MTHARTJRWMJVIF: Observations on the natural history of hyperuricemia and gout. I. An eighteen year follow-up of nineteen gouty families. Amer. J. Med. 37: 862, 1964. CrossrefMedlineGoogle Scholar87. HALLBARRYDAWBERMCNAMARA APPETRPM: Epidemiology of gout and hyperuricemia. A long-term population study. Amer. J. Med. 42: 27, 1967. CrossrefMedlineGoogle Scholar88. SMYTH CJ: Hereditary factors in gout: a review of recent literature. Metabolism 6: 218, 1957. MedlineGoogle Scholar89. HENCH PW: The diagnosis of gout and gouty arthritis. J. Lab. Clin. Med. 220: 48, 1936. Google Scholar90. GUTMANYU ABTF: Renal function in gout with a commentary on the renal regulation of urate excretion, and the role of the kidney in the pathogenesis of gout. Amer. J. Med. 23: 600, 1957. CrossrefMedlineGoogle Scholar91. HOEFNACELANDREWMIREAULTBERNDT DEDNGWO: Hereditary choreoathetosis, self-mutilation, and hyperuricemia in young males. New Eng. J. Med. 273: 130, 1965. CrossrefMedlineGoogle Scholar92. MICHENER WM: Hyperuricemia and mental retardation with athetosis and self-mutilation. Amer. J. Dis. Child. 113: 195, 1967. CrossrefMedlineGoogle Scholar93. NYHAN WL: Clinical features of the Lesch-Nyhan syndrome. Summary of clinical features. Fed. Proc. 27: 1034, 1968. MedlineGoogle Scholar94. WARDBICKELCORBIN LEWHDB: Median neuritis (carpel tunnel syndrome) caused by gouty tophi. JAMA 167: 855, 1958. Google Scholar95. O'HARALEVIN LJM: Carpel tunnel syndrome and gout. Arch. Intern. Med. (Chicago) 120: 180, 1967. CrossrefMedlineGoogle Scholar96. HOEFNAGEL D: Seminars on the Lesch-Nyhan syndrome: discussion. Fed. Proc. 27: 1045, 1968. Google Scholar97. SASSITABASHIDEXTER JKHHRA: Juvenile gout with brain involvement. Arch. Neurol. (Chicago) 13: 639, 1965. CrossrefMedlineGoogle Scholar98. AL-KHALIDICHAGLASSIAN UATH: The species distribution of xanthine oxidase. Biochem. J. 97: 318, 1965. CrossrefMedlineGoogle Scholar99. BOYDDOLMANKNIGHTSHEPPARD EMMLMEP: The chronic oral toxicity of caffeine. Canad. J. Physiol. Pharmacol. 43: 995, 1965. CrossrefGoogle Scholar100. SEEGMILLER JE: Seminars on the Lesch-Nyhan syndrome: pathology and pathologic physiology and discussion. Fed. Proc. 27: 1043, 1968. Google Scholar101. FARQUHARWYAS JWP: Abetalipoproteinemia, in Metabolic Basis of Inherited Disease, 2nd edition, edited by STANBURY, J. B., WYNGAARDEN, J. B., FREDRICKSON, D. S., McGraw-Hill Book Co., Inc., New York, 1966, p. 509. Google Scholar102. BODERSEDGWICK ERP: Ataxia-telangiectasia. A review of 101 cases. Little Club Clin. Develop. Med. 8: 110, 1963. Google Scholar103. STEINBERGVROOMENGELCAMMERMEYERMIZECEVIGAN DFQWKJCEJ: Refsum's disease—a recently characterized lipidosis involving the nervous system. Ann. Intern. Med. 66: 365, 1967. LinkGoogle Scholar104. VAN DER ZEESCHRETLENMONNENS SPEDLA: Megaloblastic anemia in the Lesch-Nyhan syndrome. Lancet 1: 1427, 1968. CrossrefMedlineGoogle Scholar105. WATKINSKELLEYROSENBLOOMSEEGMILLER SPWNFMJE: In preparation. Google Scholar106. GRANTHOFFBRANDWELLS HCAVDG: Folate deficiency and neurological disease. Lancet 2: 763, 1965. CrossrefMedlineGoogle Scholar107. STRACHANHENDERSON RWJG: Dementia and folate deficiency. Quart. J. Med. 36: 189, 1967. MedlineGoogle Scholar108. RIDDLE MC: The endogenous uric acid metabolism in pernicious anemia. J. Clin. Invest. 8: 69, 1929. CrossrefMedlineGoogle Scholar109. BUCHANAN JM: The function of vitamin B12 and folic acid coenzymes in mammalian cells. Medicine (Balt.) 43: 697, 1964. CrossrefMedlineGoogle Scholar110. HAWKINSELLISRAWSON CFHAA: Malignant gout with tophaceous small intestine and megaloblastic anemia. Ann. Rheum. Dis. 24: 224, 1965. CrossrefMedlineGoogle Scholar111. DAHLKEMERTENS-ROESLER MBE: Malabsorption of folic acid due to diphenylhydantoin. Blood 30: 341, 1967. CrossrefMedlineGoogle Scholar112. FELDMANWALLACE EBSL: Hypertriglyceridemia in gout. Circulation 29 (suppl.): 508, 1964. CrossrefGoogle Scholar113. BERKOWITZ D: Gout, hyperlipidemia and diabetes interrelationships. JAMA 197: 77, 1966. CrossrefMedlineGoogle Scholar114. MOSKOWITZKATZ RWD: Chondrocalcinosis and chondrocalsynovitis (pseudogout syndrome). Analysis of twenty-four cases. Amer. J. Med. 43: 322, 1967. CrossrefMedlineGoogle Scholar115. DODDSSTEINBACH WJHL: Gout associated with calcification of cartilage. New Eng. J. Med. 275: 745, 1966. CrossrefMedlineGoogle Scholar116. BENEDEK TG: Correlations of serum uric acid and lipid concentrations in normal, gouty and atherosclerotic men. Ann. Intern. Med. 66: 851, 1967. LinkGoogle Scholar117. GARROD AE: The Inborn Factors of Disease, Oxford University Press, New York, 1931. CrossrefGoogle Scholar118. SMYTHCOTTERMANFREYBERG CJCWRH: The genetics of gout and hyperuricemia—an analysis of nineteen families. J. Clin. Invest. 27: 749, 1948. CrossrefGoogle Scholar119. STECHERHERSHSOLOMAN RMAHWN: The heredity of gout and its relationship to familial hyperuricemia. Ann. Intern. Med. 31: 595, 1949. LinkGoogle Scholar120. BURCHO'BRIENKURLANDNEEDBUNIM TAWMLTRJJ: Hyperuricemia and gout in the Marianas Islands. Arthritis Rheum. 7: 296, 1964. Google Scholar121. HAUGEHARVALD MB: Heredity in gout and hyperuricemia. Acta Med. Scand. 152: 247, 1955. CrossrefMedlineGoogle Scholar122. EMMERSON BT: Heredity in primary gout. Aust. Ann. Med. 9: 168, 1960. MedlineGoogle Scholar123. NEELRAKICDAVIDSONVALKENBERGMIKKELSEN JVMTRTHAWM: Studies on hyperuricemia. II. A reconsideration of the distribution of serum uric acid values in the families of Smyth, Cotterman and Freyberg. Amer. J. Hum. Genet. 17: 14, 1965. MedlineGoogle Scholar124. HOWELL RR: The interrelationship of glycogen storage disease and gout. Arthritis Rheum. 8: 780, 1965. CrossrefMedlineGoogle Scholar125. MIKKELSENDODGEVALKENBURG WMHJH: The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia. Amer. J. Med. 39: 242, 1965. CrossrefMedlineGoogle Scholar126. ACHESONO'BRIEN RMWM: Dependence of serum uric acid on hemoglobin and other factors in the general population. Lancet 2: 777, 1966. CrossrefMedlineGoogle Scholar127. STETTEN D: Gout. Perspect. Biol. Med. 2: 185, 1959. CrossrefMedlineGoogle Scholar128. NYHANPESEKSWEETMANCARPENTERCARTER WLJLDGCH: Genetics of an X-linked disorder of uric acid metabolism and cerebral function. Pediat. Res. 1: 5, 1967. CrossrefGoogle Scholar128a. SHAPIROSHEPPARDDREIFUSSNEWCOMBE SLBLFEDS: X-linked recessive inheritance of a syndrome of mental retardation with hyperuricemia. Proc. Soc. Exp. Biol. Med. 122: 609, 1966. CrossrefMedlineGoogle Scholar129. GREENENYHANSEEGMILLER MLWLJE: Unpublished observations. Google Scholar130. ROSENBLOOMKELLEYHENDERSONSEEGMILLER FMWNJFJE: Lyon hypothesis and X-linked disease. Lancet 2: 305, 1967. CrossrefGoogle Scholar131. MIGEONDER KALOUSTIANNYHANYOUNGCHILDS BRVMWLWJB: X-linked hypoxanthine-guanine phosphoribosyltransferase deficiency: Heterozygote has two clonal populations. Science 160: 425, 1968. CrossrefMedlineGoogle Scholar132. SALZMANNDE MARSBENKE JRP: Singleallele expression at an X-linked hyperuricemia locus in heterozygous human cells. Proc. Natl. Acad. Sci. 60: 545, 1968. CrossrefMedlineGoogle Scholar133. GREENEFUJIMOTOROSENTHALSEEGMILLER MLWYIMJE: In preparation. Google Scholar134. FUJIMOTOSEEGMILLERUHLENDORFJACOBSON WYJEBWCB: Biochemical diagnosis of an X-linked disease in utero. Lancet: In press. Google Scholar135. LYON MF: Gene action in the X-chromosome of the mouse (Musmusculus L.) Nature (London) 190: 372, 1961. CrossrefMedlineGoogle Scholar136. MOTULSKY AG: Theoretical and clinical problems of glucose-6-phosphate dehydrogenase deficiency, in Abnormal Hemoglobins in Africa, edited by JONXIS, J. H. P., Blackwell Scientific Publishers, Inc., Oxford, 1965, p. 143. Google Scholar137. KELLEYSEEGMILLER WNJE: Unpublished observations. Google Scholar138. BARROWHEINDELROBERTSGRAHAM EMCCHRJB: Heterozygosity and homozygosity in von Willebrand's disease. Proc. Soc. Exp. Biol. Med. 118: 684, 1965. CrossrefMedlineGoogle Scholar139. HENDERSON JF: Effects of anticancer drugs on biochemical control mechanisms. Prog. Exp. Tumor Res. 6: 84, 1965. CrossrefMedlineGoogle Scholar140. ELIONHITCHINGS GBGH: Metabolic basis for the actions of analogs of purines and pyrimidines. Advances Chemother. 2: 31, 1965. Google Scholar141. ELION GB: Biochemistry and pharmacology of purine analogs. Fed. Proc. 26: 989, 1967. Google Scholar142. MCCOLLISTERGILBERTASHTONWYNGAARDEN RJWRDMJB: Pseudofeedback inhibition of purine synthesis by 6-mercaptopurine ribonucleotide and other purine analogues. J. Biol. Chem. 239: 1560, 1964. CrossrefMedlineGoogle Scholar143. SORENSEN LB: Suppression of the shunt pathway in primary gout by azathioprine. Proc. Nat. Acad Sci. USA 55: 571, 1966. CrossrefMedlineGoogle Scholar144. DAVIDSONWINTER JDTS: Purine nucleotide pyrophosphorylases in 6-mercaptopurine-sensitive and resistant human leukemias. Cancer Res. 24: 261, 1964. MedlineGoogle Scholar145. BROWNKELLEYSEEGMILLERCARBONE RSWNJEPP: The action of thiopurines in lymphocytes lacking hypoxanthine guanine phosphoribosyltransferase (abstract). J. Clin. Invest. 47: 12a, 1968. Google Scholar146. KALOW W: Genetic factors in relation to drugs. Annual Rev. Pharmacol. 5: 9, 1965. CrossrefMedlineGoogle Scholar147. ELION GB: Personal communication. Google Scholar148. ELIONCALLAHANNATHANBIEBERRUNDLESHITCHINGS GBSHSRWGH: Potentiation by inhibition of drug degradation: 6-substituted purines and xanthine oxidase. Biochem. Pharmacol. 12: 85, 1963. CrossrefGoogle Scholar149. ELION GB: Enzymatic and metabolic studies with allopurinol. Ann. Rheum. Dis. 25 (suppl. 6): 608, 1966. CrossrefMedlineGoogle Scholar150. WATTSWATTSSEEGMILLER RWJEJE: Xanthine oxidase activity in human tissues and its inhibition by allopurinol (4-hydroxypyrazolo (3, 4-d) pyrimidine). J. Lab. Clin. Med. 66: 688, 1965. MedlineGoogle Scholar151. RUNDLESWYNGAARDENHITCHINGSELIONSILBERMAN RWJBGHGBHR: Effects of a xanthine oxidase inhibitor on thiopurine metabolism, hyperuricemia and gout. Trans. Ass. Amer. Physicians 76: 126, 1963. Google Scholar152. WYNGAARDENRUNDLESSILBERMANHUNTER JBRWHRS: Control of hyperuricemia with hydroxypyrazolopyrimidine, a purine analogue which inhibits uric acid synthesis. Arthritis Rheum. 6: 306, 1963. Google Scholar153. RUNDLESMETZSILBERMAN RWENHR: Allopurinol in the treatment of gout. Ann. Intern. Med. 64: 229, 1966. LinkGoogle Scholar154. WYNGAARDENRUNDLESMETZ JBRWEN: Allopurinol in the treatment of gout. Ann. Intern. Med. 62: 842, 1965. LinkGoogle Scholar155. KRAKOFFMEYER IHRL: Prevention of hyperuricemia in leukemia and lymphoma: use of allopurinol, a xanthine oxidase in hibitor. JAMA 193: 1, 1965. CrossrefMedlineGoogle Scholar156. VOGLERBAINHUGULEYPALMERLOUREY WRJACMHGME: Metabolic and therapeutic effects of allopurinol in patients with leukemia and gout. Amer. J. Med. 40: 548, 1966. CrossrefGoogle Scholar157. WATTSWATKINSMATTHIASGIBBS RWPJJQDA: Allopurinol and acute uric acid nephropathy. Brit. Med. J. 1: 205, 1966. CrossrefMedlineGoogle Scholar158. NEWCOMBESHAPIROSHEPPARDDREIFUSS DSSLGLFE: Treatment of X-linked primary hyperuricemia with allopurinol. JAMA 198: 225, 1966. CrossrefGoogle Scholar159. RUNDLES RW: Metabolic effects of allopurinol and alloxanthine. Amer. Rheum. Dis. 25: 615, 1966. CrossrefMedlineGoogle Scholar160. GOLDFARBSMYTH ECJ: Effects of allopurinol, a xanthine oxidase inhibitor, and sulfinpyrazone upon the urinary and serum urate concentrations in eight patients with tophaceous gout. Arthritis Rheum. 9: 414, 1966. CrossrefMedlineGoogle Scholar161. KLINENBERGGOLDFINGERSEEGMILLER JRSEJE: The effectiveness of the xanthine oxidase inhibitor allopurinol in the treatment of gout. Ann. Intern. Med. 62: 639, 1965. LinkGoogle Scholar162. EMMERSON BT: Discussion. Session I. Biochemistry and metabolism. Symposium on allopurinol. Ann. Rheum. Dis. 25 (suppl. 6): 622, 1966. Google Scholar163. HITCHINGS GH: Effects of allopurinol in relation to purine biosynthesis. Ibid., p. 601. Google Scholar164. POMALESBIEBERFRIEDMANHITCHINGS RSRGH: Augmentation of the incorporation of hypoxanthine into nucleic acids by administration of an inhibitor of xanthine oxidase. Biochem. Biophys. Acta 72: 119, 1963. CrossrefMedlineGoogle Scholar165. BALISKRAKOFFBERMANDANCIS MEIHPHJ: Urinary metabolites in congenital hyperuricosuria. Science 156: 1122, 1967. CrossrefMedlineGoogle Scholar166. SEEGMILLER JE: Unpublished observations. Google Scholar167. KRAKOFF IH: Use of allopurinol in preventing hyperuricemia in leukemia and lymphoma. Cancer. 19: 1489, 1966. CrossrefMedlineGoogle Scholar168. GREENEFUJIMOTOSEEGMILLER MLWYJE: Urinary xanthine stones—a complication of allopurinol therapy. New Eng. J. Med.: In press. Google Scholar169. SORENSEN LB: in Proceedings of the Seminars on the Lesch-Nyhan syndrome. Fed. Proc. 27: 1099, 1968. Google Scholar170. CAPUTTO R: Nucleotide kinases, in The Enzymes, 2nd edition, vol. 6, edited by BOYER, P. D., SARDY, H., MYRNBACK, K., Academic Press Inc., Publishers, New York, 1962, p. 133. Google Scholar171. GREENEFUJIMOTOKELLEYSEEGMILLER MLWYWNJE: Unpublished results. Google Scholar172. MONTGOMERYDIXONDULMADGETHOMASBROCKMANSKIPPER JAGJEAHJRWHE: Inhibition of 6-mercaptopurine resistant cancer cells in culture by bis (Thioinosine)-5′,5‴-phosphate. Nature (London) 199: 769, 1963. CrossrefGoogle Scholar173. SEEGMILLERLASTERSTETTEN JELD: Incorporation of 4-amino-5 imidazole carboxamide-4-13C into uric acid in the normal human. J. Biol. Chem. 216: 653, 1955. CrossrefMedlineGoogle Scholar174. GENNETTSCHNEBLIVAILALLANMONTGOMERY LLHPMHPWJA: Purine ribonucleotide kinase activity and resistance to some analogs of adenosine. Mol. Pharmacol. 2: 432, 1966. MedlineGoogle Scholar This content is PDF only. To continue reading please click on the PDF icon. Author, Article, and Disclosure InformationAffiliations: Bethesda, MarylandFrom the Section of Human Biochemic" @default.
- W2018124448 created "2016-06-24" @default.
- W2018124448 creator A5031449515 @default.
- W2018124448 creator A5031960259 @default.
- W2018124448 creator A5037864999 @default.
- W2018124448 creator A5083691928 @default.
- W2018124448 creator A5087378867 @default.
- W2018124448 date "1969-01-01" @default.
- W2018124448 modified "2023-10-12" @default.
- W2018124448 title "Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency in Gout" @default.
- W2018124448 cites W123782515 @default.
- W2018124448 cites W1267568814 @default.
- W2018124448 cites W1485480802 @default.
- W2018124448 cites W1494441064 @default.
- W2018124448 cites W1503425512 @default.
- W2018124448 cites W1509857797 @default.
- W2018124448 cites W1536614253 @default.
- W2018124448 cites W1539181208 @default.
- W2018124448 cites W1561445821 @default.
- W2018124448 cites W158124559 @default.
- W2018124448 cites W1583319582 @default.
- W2018124448 cites W1586060400 @default.
- W2018124448 cites W1605856239 @default.
- W2018124448 cites W167973400 @default.
- W2018124448 cites W1793922183 @default.
- W2018124448 cites W182113898 @default.
- W2018124448 cites W1892424070 @default.
- W2018124448 cites W1930064695 @default.
- W2018124448 cites W1969026717 @default.
- W2018124448 cites W1970540527 @default.
- W2018124448 cites W1973130973 @default.
- W2018124448 cites W1975778699 @default.
- W2018124448 cites W1976566711 @default.
- W2018124448 cites W1980961884 @default.
- W2018124448 cites W1986333903 @default.
- W2018124448 cites W1988442979 @default.
- W2018124448 cites W1988452647 @default.
- W2018124448 cites W1991973314 @default.
- W2018124448 cites W1993933731 @default.
- W2018124448 cites W1993952908 @default.
- W2018124448 cites W1995989582 @default.
- W2018124448 cites W1996661565 @default.
- W2018124448 cites W1999809845 @default.
- W2018124448 cites W2002622396 @default.
- W2018124448 cites W2003946665 @default.
- W2018124448 cites W2005554448 @default.
- W2018124448 cites W2005635581 @default.
- W2018124448 cites W2007482547 @default.
- W2018124448 cites W2014990715 @default.
- W2018124448 cites W201510533 @default.
- W2018124448 cites W2015259706 @default.
- W2018124448 cites W2020330595 @default.
- W2018124448 cites W2022081946 @default.
- W2018124448 cites W2023993700 @default.
- W2018124448 cites W2025218533 @default.
- W2018124448 cites W2028293613 @default.
- W2018124448 cites W2029146706 @default.
- W2018124448 cites W2031691403 @default.
- W2018124448 cites W2032619610 @default.
- W2018124448 cites W2034398577 @default.
- W2018124448 cites W2035447322 @default.
- W2018124448 cites W2036366110 @default.
- W2018124448 cites W2038925211 @default.
- W2018124448 cites W2039299413 @default.
- W2018124448 cites W2039601466 @default.
- W2018124448 cites W2043828182 @default.
- W2018124448 cites W2043854320 @default.
- W2018124448 cites W2044825802 @default.
- W2018124448 cites W2049499559 @default.
- W2018124448 cites W2050527189 @default.
- W2018124448 cites W2050819982 @default.
- W2018124448 cites W2053536091 @default.
- W2018124448 cites W2054328698 @default.
- W2018124448 cites W2063269646 @default.
- W2018124448 cites W2063445694 @default.
- W2018124448 cites W2065119534 @default.
- W2018124448 cites W2065759378 @default.
- W2018124448 cites W2066549591 @default.
- W2018124448 cites W2069057145 @default.
- W2018124448 cites W2070325681 @default.
- W2018124448 cites W2070913199 @default.
- W2018124448 cites W208543579 @default.
- W2018124448 cites W2087672445 @default.
- W2018124448 cites W2087782897 @default.
- W2018124448 cites W2088480913 @default.
- W2018124448 cites W2088566355 @default.
- W2018124448 cites W2089549345 @default.
- W2018124448 cites W2091609058 @default.
- W2018124448 cites W2092342343 @default.
- W2018124448 cites W2093458687 @default.
- W2018124448 cites W2094997630 @default.
- W2018124448 cites W2108652885 @default.
- W2018124448 cites W2109208957 @default.
- W2018124448 cites W2120613619 @default.
- W2018124448 cites W2123255145 @default.
- W2018124448 cites W2125477674 @default.
- W2018124448 cites W2150282746 @default.
- W2018124448 cites W2152187772 @default.