Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018140976> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2018140976 endingPage "1343" @default.
- W2018140976 startingPage "1327" @default.
- W2018140976 abstract "A many-boson model is formulated and expressions for its exact eigenstates and energies are obtained for both an arbitrary finite and an infinite number of bosons. The Hamiltonian of the model contains interactions between bosons whose momenta have equal magnitudes but opposite directions. The matrix elements of this interaction are taken to be a constant over a range of momenta surrounding k = 0. The ground state of the 2N-particle system is shown to be a product of N pair-creation operators acting on the vacuum state. Each of these pair-creation operators depends upon one of N parameters which are called pair energies. The N pair energies are shown to satisfy a coupled system of nonlinear algebraic equations. The energy of the state is the sum of the pair energies and the occupation probabilities of the single-particle levels are given as simple functions of the pair energies. Similar results are derived for the excited states of the system and for the states of an odd number of particles. These results are valid for both a repulsive and an attractive interaction, since they only depend upon the form of the interaction. The equations are solved algebraically for two model systems. The first of these is one whose single-particle kinetic energy takes on only one value. The equations for this system are solved for an arbitrary interaction strength and it is shown that the pair energies are proportional to the zeros of certain Laguerre polynomials. The second system is one in which the single-particle kinetic energy can take on two values. The equations for this system are solved in the strong repulsive-interaction limit and it is shown that the pair energies are proportional to the zeros of certain Jacobi polynomials. The excitation energies of this second system are shown to be proportional to 1/n and the occupations of the two single-particle levels in the ground state are shown to be proportional to n, where n is the total number of particles. For a repulsive interaction and an arbitrary single-particle spectrum, the algebraic equations for the pair energies are converted into an approximate integral equation for the density of roots which is accurate to order 1/n. This integral equation is solved for a strong interaction which, in the context of this model, means an interaction whose strength is greater than a constant times 1/V⅔ in the limit of a large volume. From this solution, the following results are obtained: (1) the lowest two single-particle levels have occupations of order n; (2) the excitation spectrum is that of a set of noninteracting quasiparticles; and (3) the quasiparticle spectrum has two zeros corresponding to the lowest two single-particle levels. Apart from the presence of two zeros, the quasiparticle spectrum does not differ significantly from that of the noninteracting particles." @default.
- W2018140976 created "2016-06-24" @default.
- W2018140976 creator A5054097074 @default.
- W2018140976 date "1968-09-01" @default.
- W2018140976 modified "2023-09-29" @default.
- W2018140976 title "Exactly Solvable Many-Boson Model" @default.
- W2018140976 cites W1976110164 @default.
- W2018140976 cites W1980420720 @default.
- W2018140976 cites W2007296186 @default.
- W2018140976 cites W2010199947 @default.
- W2018140976 cites W2014437371 @default.
- W2018140976 cites W2027549552 @default.
- W2018140976 cites W2028832669 @default.
- W2018140976 cites W2030792050 @default.
- W2018140976 cites W2033770314 @default.
- W2018140976 cites W2040574175 @default.
- W2018140976 cites W2057310818 @default.
- W2018140976 cites W2072422607 @default.
- W2018140976 cites W2075367013 @default.
- W2018140976 cites W2083154822 @default.
- W2018140976 cites W2087444585 @default.
- W2018140976 cites W2134060924 @default.
- W2018140976 doi "https://doi.org/10.1063/1.1664719" @default.
- W2018140976 hasPublicationYear "1968" @default.
- W2018140976 type Work @default.
- W2018140976 sameAs 2018140976 @default.
- W2018140976 citedByCount "75" @default.
- W2018140976 countsByYear W20181409762012 @default.
- W2018140976 countsByYear W20181409762013 @default.
- W2018140976 countsByYear W20181409762014 @default.
- W2018140976 countsByYear W20181409762016 @default.
- W2018140976 countsByYear W20181409762017 @default.
- W2018140976 countsByYear W20181409762018 @default.
- W2018140976 countsByYear W20181409762019 @default.
- W2018140976 countsByYear W20181409762020 @default.
- W2018140976 countsByYear W20181409762021 @default.
- W2018140976 countsByYear W20181409762022 @default.
- W2018140976 crossrefType "journal-article" @default.
- W2018140976 hasAuthorship W2018140976A5054097074 @default.
- W2018140976 hasConcept C108408018 @default.
- W2018140976 hasConcept C121332964 @default.
- W2018140976 hasConcept C126255220 @default.
- W2018140976 hasConcept C130787639 @default.
- W2018140976 hasConcept C158693339 @default.
- W2018140976 hasConcept C181500209 @default.
- W2018140976 hasConcept C33923547 @default.
- W2018140976 hasConcept C37914503 @default.
- W2018140976 hasConcept C62520636 @default.
- W2018140976 hasConcept C69523127 @default.
- W2018140976 hasConcept C79118098 @default.
- W2018140976 hasConceptScore W2018140976C108408018 @default.
- W2018140976 hasConceptScore W2018140976C121332964 @default.
- W2018140976 hasConceptScore W2018140976C126255220 @default.
- W2018140976 hasConceptScore W2018140976C130787639 @default.
- W2018140976 hasConceptScore W2018140976C158693339 @default.
- W2018140976 hasConceptScore W2018140976C181500209 @default.
- W2018140976 hasConceptScore W2018140976C33923547 @default.
- W2018140976 hasConceptScore W2018140976C37914503 @default.
- W2018140976 hasConceptScore W2018140976C62520636 @default.
- W2018140976 hasConceptScore W2018140976C69523127 @default.
- W2018140976 hasConceptScore W2018140976C79118098 @default.
- W2018140976 hasIssue "9" @default.
- W2018140976 hasLocation W20181409761 @default.
- W2018140976 hasOpenAccess W2018140976 @default.
- W2018140976 hasPrimaryLocation W20181409761 @default.
- W2018140976 hasRelatedWork W2055732145 @default.
- W2018140976 hasRelatedWork W2077660587 @default.
- W2018140976 hasRelatedWork W2093432197 @default.
- W2018140976 hasRelatedWork W2315792575 @default.
- W2018140976 hasRelatedWork W2398988434 @default.
- W2018140976 hasRelatedWork W2964276154 @default.
- W2018140976 hasRelatedWork W2968842872 @default.
- W2018140976 hasRelatedWork W3099735391 @default.
- W2018140976 hasRelatedWork W3105698567 @default.
- W2018140976 hasRelatedWork W4297911756 @default.
- W2018140976 hasVolume "9" @default.
- W2018140976 isParatext "false" @default.
- W2018140976 isRetracted "false" @default.
- W2018140976 magId "2018140976" @default.
- W2018140976 workType "article" @default.