Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018153104> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2018153104 endingPage "3904" @default.
- W2018153104 startingPage "3885" @default.
- W2018153104 abstract "Real-time motion management is important in radiotherapy. In addition to effective monitoring schemes, prediction is required to compensate for system latency, so that treatment can be synchronized with tumor motion. However, it is difficult to predict tumor motion at all times, and it is critical to determine when large prediction errors may occur. Such information can be used to pause the treatment beam or adjust monitoring/prediction schemes. In this study, we propose a hypothesis testing approach for detecting instants corresponding to potentially large prediction errors in real time. We treat the future tumor location as a random variable, and obtain its empirical probability distribution with the kernel density estimation-based method. Under the null hypothesis, the model probability is assumed to be a concentrated Gaussian centered at the prediction output. Under the alternative hypothesis, the model distribution is assumed to be non-informative uniform, which reflects the situation that the future position cannot be inferred reliably. We derive the likelihood ratio test (LRT) for this hypothesis testing problem and show that with the method of moments for estimating the null hypothesis Gaussian parameters, the LRT reduces to a simple test on the empirical variance of the predictive random variable. This conforms to the intuition to expect a (potentially) large prediction error when the estimate is associated with high uncertainty, and to expect an accurate prediction when the uncertainty level is low. We tested the proposed method on patient-derived respiratory traces. The 'ground-truth' prediction error was evaluated by comparing the prediction values with retrospective observations, and the large prediction regions were subsequently delineated by thresholding the prediction errors. The receiver operating characteristic curve was used to describe the performance of the proposed hypothesis testing method. Clinical implication was represented by miss detection rate and delivery efficiency. Both characterizations demonstrated the promising results and provided insight into the tradeoffs in the detection task. This study opens the discussion on real-time analysis of prediction accuracy and promises important information in automatically adjusting treatment and/or target monitoring schemes." @default.
- W2018153104 created "2016-06-24" @default.
- W2018153104 creator A5051265222 @default.
- W2018153104 date "2010-06-22" @default.
- W2018153104 modified "2023-09-26" @default.
- W2018153104 title "Prospective detection of large prediction errors: a hypothesis testing approach" @default.
- W2018153104 cites W1976660465 @default.
- W2018153104 cites W1979830623 @default.
- W2018153104 cites W1983592049 @default.
- W2018153104 cites W2028995298 @default.
- W2018153104 cites W2031512758 @default.
- W2018153104 cites W2045575771 @default.
- W2018153104 cites W2051555758 @default.
- W2018153104 cites W2052499560 @default.
- W2018153104 cites W2052643382 @default.
- W2018153104 cites W2060559903 @default.
- W2018153104 cites W2140500402 @default.
- W2018153104 cites W2151736239 @default.
- W2018153104 cites W2158453486 @default.
- W2018153104 cites W2167583425 @default.
- W2018153104 cites W2993330478 @default.
- W2018153104 doi "https://doi.org/10.1088/0031-9155/55/13/021" @default.
- W2018153104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20571211" @default.
- W2018153104 hasPublicationYear "2010" @default.
- W2018153104 type Work @default.
- W2018153104 sameAs 2018153104 @default.
- W2018153104 citedByCount "9" @default.
- W2018153104 countsByYear W20181531042013 @default.
- W2018153104 countsByYear W20181531042014 @default.
- W2018153104 countsByYear W20181531042015 @default.
- W2018153104 countsByYear W20181531042017 @default.
- W2018153104 countsByYear W20181531042020 @default.
- W2018153104 countsByYear W20181531042022 @default.
- W2018153104 crossrefType "journal-article" @default.
- W2018153104 hasAuthorship W2018153104A5051265222 @default.
- W2018153104 hasConcept C105795698 @default.
- W2018153104 hasConcept C11413529 @default.
- W2018153104 hasConcept C120639 @default.
- W2018153104 hasConcept C154945302 @default.
- W2018153104 hasConcept C169857963 @default.
- W2018153104 hasConcept C185429906 @default.
- W2018153104 hasConcept C191988596 @default.
- W2018153104 hasConcept C33923547 @default.
- W2018153104 hasConcept C41008148 @default.
- W2018153104 hasConcept C71134354 @default.
- W2018153104 hasConcept C87007009 @default.
- W2018153104 hasConceptScore W2018153104C105795698 @default.
- W2018153104 hasConceptScore W2018153104C11413529 @default.
- W2018153104 hasConceptScore W2018153104C120639 @default.
- W2018153104 hasConceptScore W2018153104C154945302 @default.
- W2018153104 hasConceptScore W2018153104C169857963 @default.
- W2018153104 hasConceptScore W2018153104C185429906 @default.
- W2018153104 hasConceptScore W2018153104C191988596 @default.
- W2018153104 hasConceptScore W2018153104C33923547 @default.
- W2018153104 hasConceptScore W2018153104C41008148 @default.
- W2018153104 hasConceptScore W2018153104C71134354 @default.
- W2018153104 hasConceptScore W2018153104C87007009 @default.
- W2018153104 hasIssue "13" @default.
- W2018153104 hasLocation W20181531041 @default.
- W2018153104 hasLocation W20181531042 @default.
- W2018153104 hasOpenAccess W2018153104 @default.
- W2018153104 hasPrimaryLocation W20181531041 @default.
- W2018153104 hasRelatedWork W163194900 @default.
- W2018153104 hasRelatedWork W2006467890 @default.
- W2018153104 hasRelatedWork W2007676212 @default.
- W2018153104 hasRelatedWork W2102834481 @default.
- W2018153104 hasRelatedWork W2159165694 @default.
- W2018153104 hasRelatedWork W2182828051 @default.
- W2018153104 hasRelatedWork W2206289822 @default.
- W2018153104 hasRelatedWork W2421517780 @default.
- W2018153104 hasRelatedWork W2503526006 @default.
- W2018153104 hasRelatedWork W2493304025 @default.
- W2018153104 hasVolume "55" @default.
- W2018153104 isParatext "false" @default.
- W2018153104 isRetracted "false" @default.
- W2018153104 magId "2018153104" @default.
- W2018153104 workType "article" @default.