Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018164003> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2018164003 abstract "Let $Gcong C_{n_1}oplus ... oplus C_{n_r}$ be a finite and nontrivial abelian group with $n_1|n_2|...|n_r$. A conjecture of Hamidoune says that if $W=w_1... w_n$ is a sequence of integers, all but at most one relatively prime to $|G|$, and $S$ is a sequence over $G$ with $|S|geq |W|+|G|-1geq |G|+1$, the maximum multiplicity of $S$ at most $|W|$, and $sigma(W)equiv 0mod |G|$, then there exists a nontrivial subgroup $H$ such that every element $gin H$ can be represented as a weighted subsequence sum of the form $g=sum_{i=1}^{n}w_is_i$, with $s_1... s_n$ a subsequence of $S$. We give two examples showing this does not hold in general, and characterize the counterexamples for large $|W|geq {1/2}|G|$. A theorem of Gao, generalizing an older result of Olson, says that if $G$ is a finite abelian group, and $S$ is a sequence over $G$ with $|S|geq |G|+D(G)-1$, then either every element of $G$ can be represented as a $|G|$-term subsequence sum from $S$, or there exists a coset $g+H$ such that all but at most $|G/H|-2$ terms of $S$ are from $g+H$. We establish some very special cases in a weighted analog of this theorem conjectured by Ordaz and Quiroz, and some partial conclusions in the remaining cases, which imply a recent result of Ordaz and Quiroz. This is done, in part, by extending a weighted setpartition theorem of Grynkiewicz, which we then use to also improve the previously mentioned result of Gao by showing that the hypothesis $|S|geq |G|+D(G)-1$ can be relaxed to $|S|geq |G|+d^*(G)$, where $d^*(G)=Sum_{i=1}^{r}(n_i-1)$. We also use this method to derive a variation on Hamidoune's conjecture valid when at least $d^*(G)$ of the $w_i$ are relatively prime to $|G|$." @default.
- W2018164003 created "2016-06-24" @default.
- W2018164003 creator A5024699113 @default.
- W2018164003 creator A5040241644 @default.
- W2018164003 creator A5063963042 @default.
- W2018164003 date "2008-06-02" @default.
- W2018164003 modified "2023-09-27" @default.
- W2018164003 title "Representation of Finite Abelian Group Elements by Subsequence Sums" @default.
- W2018164003 cites W1415576118 @default.
- W2018164003 cites W1984898741 @default.
- W2018164003 cites W1984925143 @default.
- W2018164003 cites W1996963858 @default.
- W2018164003 cites W2022057149 @default.
- W2018164003 cites W2030736010 @default.
- W2018164003 cites W2035643757 @default.
- W2018164003 cites W2040646240 @default.
- W2018164003 cites W2045336254 @default.
- W2018164003 cites W2069842544 @default.
- W2018164003 cites W2090590619 @default.
- W2018164003 cites W2139086206 @default.
- W2018164003 cites W2160424782 @default.
- W2018164003 hasPublicationYear "2008" @default.
- W2018164003 type Work @default.
- W2018164003 sameAs 2018164003 @default.
- W2018164003 citedByCount "0" @default.
- W2018164003 crossrefType "posted-content" @default.
- W2018164003 hasAuthorship W2018164003A5024699113 @default.
- W2018164003 hasAuthorship W2018164003A5040241644 @default.
- W2018164003 hasAuthorship W2018164003A5063963042 @default.
- W2018164003 hasConcept C114614502 @default.
- W2018164003 hasConcept C118615104 @default.
- W2018164003 hasConcept C121332964 @default.
- W2018164003 hasConcept C134306372 @default.
- W2018164003 hasConcept C136170076 @default.
- W2018164003 hasConcept C137877099 @default.
- W2018164003 hasConcept C162838799 @default.
- W2018164003 hasConcept C170006305 @default.
- W2018164003 hasConcept C2777404646 @default.
- W2018164003 hasConcept C2778112365 @default.
- W2018164003 hasConcept C2780990831 @default.
- W2018164003 hasConcept C2781311116 @default.
- W2018164003 hasConcept C33923547 @default.
- W2018164003 hasConcept C34388435 @default.
- W2018164003 hasConcept C54355233 @default.
- W2018164003 hasConcept C62520636 @default.
- W2018164003 hasConcept C85307737 @default.
- W2018164003 hasConcept C86803240 @default.
- W2018164003 hasConceptScore W2018164003C114614502 @default.
- W2018164003 hasConceptScore W2018164003C118615104 @default.
- W2018164003 hasConceptScore W2018164003C121332964 @default.
- W2018164003 hasConceptScore W2018164003C134306372 @default.
- W2018164003 hasConceptScore W2018164003C136170076 @default.
- W2018164003 hasConceptScore W2018164003C137877099 @default.
- W2018164003 hasConceptScore W2018164003C162838799 @default.
- W2018164003 hasConceptScore W2018164003C170006305 @default.
- W2018164003 hasConceptScore W2018164003C2777404646 @default.
- W2018164003 hasConceptScore W2018164003C2778112365 @default.
- W2018164003 hasConceptScore W2018164003C2780990831 @default.
- W2018164003 hasConceptScore W2018164003C2781311116 @default.
- W2018164003 hasConceptScore W2018164003C33923547 @default.
- W2018164003 hasConceptScore W2018164003C34388435 @default.
- W2018164003 hasConceptScore W2018164003C54355233 @default.
- W2018164003 hasConceptScore W2018164003C62520636 @default.
- W2018164003 hasConceptScore W2018164003C85307737 @default.
- W2018164003 hasConceptScore W2018164003C86803240 @default.
- W2018164003 hasLocation W20181640031 @default.
- W2018164003 hasOpenAccess W2018164003 @default.
- W2018164003 hasPrimaryLocation W20181640031 @default.
- W2018164003 hasRelatedWork W1553946883 @default.
- W2018164003 hasRelatedWork W2015359864 @default.
- W2018164003 hasRelatedWork W2027107014 @default.
- W2018164003 hasRelatedWork W2048954197 @default.
- W2018164003 hasRelatedWork W2056933883 @default.
- W2018164003 hasRelatedWork W2075209367 @default.
- W2018164003 hasRelatedWork W2139368414 @default.
- W2018164003 hasRelatedWork W2187138225 @default.
- W2018164003 hasRelatedWork W2592170562 @default.
- W2018164003 hasRelatedWork W2781548655 @default.
- W2018164003 hasRelatedWork W2946013748 @default.
- W2018164003 hasRelatedWork W2952505113 @default.
- W2018164003 hasRelatedWork W2963127871 @default.
- W2018164003 hasRelatedWork W2963926690 @default.
- W2018164003 hasRelatedWork W2963939171 @default.
- W2018164003 hasRelatedWork W2999143506 @default.
- W2018164003 hasRelatedWork W3027669863 @default.
- W2018164003 hasRelatedWork W3098764938 @default.
- W2018164003 hasRelatedWork W3164628010 @default.
- W2018164003 hasRelatedWork W3184455349 @default.
- W2018164003 isParatext "false" @default.
- W2018164003 isRetracted "false" @default.
- W2018164003 magId "2018164003" @default.
- W2018164003 workType "article" @default.