Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018175122> ?p ?o ?g. }
- W2018175122 endingPage "4300" @default.
- W2018175122 startingPage "4288" @default.
- W2018175122 abstract "In remote sensing change detection, Markov random field (MRF) has been used successfully to model the prior probability using class-labels dependencies. MRF has played an important role in the detection of complex urban changes using optical images. However, the preservation of details in urban change analysis turns out to be a highly complex task if multitemporal SAR images with their speckle are to be used. Here, the ability of MRF to preserve geometric details and to combat speckle effect at the same time becomes questionable. Blob-region phenomenon and fine structures removal are common consequences of the application of traditional MRF-based change detection algorithm. To overcome these limitations, the iterated conditional modes (ICM) framework for the optimization of the maximum a posteriori (MAP-MRF) criterion function is extended to include a nonlocal probability maximization step. This probability model, which characterizes the relationship between pixels' class-labels in a nonlocal scale, has the potential to preserve spatial details and to reduce speckle effects. Two multitemporal SAR datasets were used to assess the proposed algorithm. Experimental results using three density functions [i.e., the log normal (LN), generalized Gaussian (GG), and normal distributions (ND)] have demonstrated the efficiency of the proposed approach in terms of detail preservation and noise suppression. Compared with the traditional MRF algorithm, the proposed approach proved to be less-sensitive to the value of the contextual parameter and the chosen density function. The proposed approach has also shown less sensitivity to the quality of the initial change map when compared with the ICM algorithm." @default.
- W2018175122 created "2016-06-24" @default.
- W2018175122 creator A5025432690 @default.
- W2018175122 creator A5040195008 @default.
- W2018175122 date "2014-10-01" @default.
- W2018175122 modified "2023-09-30" @default.
- W2018175122 title "Improving SAR-Based Urban Change Detection by Combining MAP-MRF Classifier and Nonlocal Means Similarity Weights" @default.
- W2018175122 cites W1990304459 @default.
- W2018175122 cites W2004376198 @default.
- W2018175122 cites W2010491386 @default.
- W2018175122 cites W2024807719 @default.
- W2018175122 cites W2025803711 @default.
- W2018175122 cites W2032234169 @default.
- W2018175122 cites W2034073840 @default.
- W2018175122 cites W2055784463 @default.
- W2018175122 cites W2069444915 @default.
- W2018175122 cites W2090822373 @default.
- W2018175122 cites W2097073572 @default.
- W2018175122 cites W2106052468 @default.
- W2018175122 cites W2107966405 @default.
- W2018175122 cites W2110519070 @default.
- W2018175122 cites W2110764636 @default.
- W2018175122 cites W2111745675 @default.
- W2018175122 cites W2112147551 @default.
- W2018175122 cites W2115492038 @default.
- W2018175122 cites W2119797204 @default.
- W2018175122 cites W2124586808 @default.
- W2018175122 cites W2127224252 @default.
- W2018175122 cites W2130020884 @default.
- W2018175122 cites W2137901785 @default.
- W2018175122 cites W2139745272 @default.
- W2018175122 cites W2144851790 @default.
- W2018175122 cites W2152185773 @default.
- W2018175122 cites W2156668482 @default.
- W2018175122 cites W2159377629 @default.
- W2018175122 cites W2160544350 @default.
- W2018175122 cites W2161037052 @default.
- W2018175122 cites W2164626806 @default.
- W2018175122 cites W2164809340 @default.
- W2018175122 cites W2170604308 @default.
- W2018175122 doi "https://doi.org/10.1109/jstars.2014.2347171" @default.
- W2018175122 hasPublicationYear "2014" @default.
- W2018175122 type Work @default.
- W2018175122 sameAs 2018175122 @default.
- W2018175122 citedByCount "78" @default.
- W2018175122 countsByYear W20181751222015 @default.
- W2018175122 countsByYear W20181751222016 @default.
- W2018175122 countsByYear W20181751222017 @default.
- W2018175122 countsByYear W20181751222018 @default.
- W2018175122 countsByYear W20181751222019 @default.
- W2018175122 countsByYear W20181751222020 @default.
- W2018175122 countsByYear W20181751222021 @default.
- W2018175122 countsByYear W20181751222022 @default.
- W2018175122 countsByYear W20181751222023 @default.
- W2018175122 crossrefType "journal-article" @default.
- W2018175122 hasAuthorship W2018175122A5025432690 @default.
- W2018175122 hasAuthorship W2018175122A5040195008 @default.
- W2018175122 hasConcept C102290492 @default.
- W2018175122 hasConcept C105795698 @default.
- W2018175122 hasConcept C11413529 @default.
- W2018175122 hasConcept C115961682 @default.
- W2018175122 hasConcept C124504099 @default.
- W2018175122 hasConcept C153180895 @default.
- W2018175122 hasConcept C154945302 @default.
- W2018175122 hasConcept C160633673 @default.
- W2018175122 hasConcept C197055811 @default.
- W2018175122 hasConcept C203595873 @default.
- W2018175122 hasConcept C2778045648 @default.
- W2018175122 hasConcept C33923547 @default.
- W2018175122 hasConcept C41008148 @default.
- W2018175122 hasConcept C49781872 @default.
- W2018175122 hasConcept C87360688 @default.
- W2018175122 hasConcept C9810830 @default.
- W2018175122 hasConceptScore W2018175122C102290492 @default.
- W2018175122 hasConceptScore W2018175122C105795698 @default.
- W2018175122 hasConceptScore W2018175122C11413529 @default.
- W2018175122 hasConceptScore W2018175122C115961682 @default.
- W2018175122 hasConceptScore W2018175122C124504099 @default.
- W2018175122 hasConceptScore W2018175122C153180895 @default.
- W2018175122 hasConceptScore W2018175122C154945302 @default.
- W2018175122 hasConceptScore W2018175122C160633673 @default.
- W2018175122 hasConceptScore W2018175122C197055811 @default.
- W2018175122 hasConceptScore W2018175122C203595873 @default.
- W2018175122 hasConceptScore W2018175122C2778045648 @default.
- W2018175122 hasConceptScore W2018175122C33923547 @default.
- W2018175122 hasConceptScore W2018175122C41008148 @default.
- W2018175122 hasConceptScore W2018175122C49781872 @default.
- W2018175122 hasConceptScore W2018175122C87360688 @default.
- W2018175122 hasConceptScore W2018175122C9810830 @default.
- W2018175122 hasFunder F4320318240 @default.
- W2018175122 hasFunder F4320321031 @default.
- W2018175122 hasFunder F4320321540 @default.
- W2018175122 hasIssue "10" @default.
- W2018175122 hasLocation W20181751221 @default.
- W2018175122 hasOpenAccess W2018175122 @default.
- W2018175122 hasPrimaryLocation W20181751221 @default.
- W2018175122 hasRelatedWork W1522441193 @default.
- W2018175122 hasRelatedWork W1964120219 @default.