Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018193208> ?p ?o ?g. }
- W2018193208 endingPage "180" @default.
- W2018193208 startingPage "173" @default.
- W2018193208 abstract "Rationale and Objectives The aim of this study was to quantify the effect of overlapping reconstruction on the precision and accuracy of lung nodule volume estimates in a phantom computed tomographic (CT) study. Materials and Methods An anthropomorphic phantom was used with a vasculature insert on which synthetic lung nodules were attached. Repeated scans of the phantom were acquired using a 64-slice CT scanner. Overlapping and contiguous reconstructions were performed for a range of CT imaging parameters (exposure, slice thickness, pitch, reconstruction kernel) and a range of nodule characteristics (size, density). Nodule volume was estimated with a previously developed matched-filter algorithm. Results Absolute percentage bias across all nodule sizes (n = 2880) was significantly lower when overlapping reconstruction was used, with an absolute percentage bias of 6.6% (95% confidence interval [CI], 6.4–6.9), compared to 13.2% (95% CI, 12.7–13.8) for contiguous reconstruction. Overlapping reconstruction also showed a precision benefit, with a lower standard percentage error of 7.1% (95% CI, 6.9–7.2) compared with 15.3% (95% CI, 14.9–15.7) for contiguous reconstructions across all nodules. Both effects were more pronounced for the smaller, subcentimeter nodules. Conclusions These results support the use of overlapping reconstruction to improve the quantitative assessment of nodule size with CT imaging. The aim of this study was to quantify the effect of overlapping reconstruction on the precision and accuracy of lung nodule volume estimates in a phantom computed tomographic (CT) study. An anthropomorphic phantom was used with a vasculature insert on which synthetic lung nodules were attached. Repeated scans of the phantom were acquired using a 64-slice CT scanner. Overlapping and contiguous reconstructions were performed for a range of CT imaging parameters (exposure, slice thickness, pitch, reconstruction kernel) and a range of nodule characteristics (size, density). Nodule volume was estimated with a previously developed matched-filter algorithm. Absolute percentage bias across all nodule sizes (n = 2880) was significantly lower when overlapping reconstruction was used, with an absolute percentage bias of 6.6% (95% confidence interval [CI], 6.4–6.9), compared to 13.2% (95% CI, 12.7–13.8) for contiguous reconstruction. Overlapping reconstruction also showed a precision benefit, with a lower standard percentage error of 7.1% (95% CI, 6.9–7.2) compared with 15.3% (95% CI, 14.9–15.7) for contiguous reconstructions across all nodules. Both effects were more pronounced for the smaller, subcentimeter nodules. These results support the use of overlapping reconstruction to improve the quantitative assessment of nodule size with CT imaging." @default.
- W2018193208 created "2016-06-24" @default.
- W2018193208 creator A5006593300 @default.
- W2018193208 creator A5010335705 @default.
- W2018193208 creator A5021406539 @default.
- W2018193208 creator A5039348485 @default.
- W2018193208 creator A5073468417 @default.
- W2018193208 date "2013-02-01" @default.
- W2018193208 modified "2023-10-17" @default.
- W2018193208 title "Benefit of Overlapping Reconstruction for Improving the Quantitative Assessment of CT Lung Nodule Volume" @default.
- W2018193208 cites W1966960520 @default.
- W2018193208 cites W1988040043 @default.
- W2018193208 cites W1990085673 @default.
- W2018193208 cites W1990919544 @default.
- W2018193208 cites W1996585576 @default.
- W2018193208 cites W2006720992 @default.
- W2018193208 cites W2012686402 @default.
- W2018193208 cites W2019607817 @default.
- W2018193208 cites W2050887207 @default.
- W2018193208 cites W2061083185 @default.
- W2018193208 cites W2061483842 @default.
- W2018193208 cites W2065085976 @default.
- W2018193208 cites W2067012554 @default.
- W2018193208 cites W2067564045 @default.
- W2018193208 cites W2070466800 @default.
- W2018193208 cites W2109436873 @default.
- W2018193208 cites W2127100498 @default.
- W2018193208 cites W2139248078 @default.
- W2018193208 cites W2149951492 @default.
- W2018193208 cites W2151695813 @default.
- W2018193208 cites W2169319350 @default.
- W2018193208 cites W2169671297 @default.
- W2018193208 doi "https://doi.org/10.1016/j.acra.2012.08.014" @default.
- W2018193208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23085408" @default.
- W2018193208 hasPublicationYear "2013" @default.
- W2018193208 type Work @default.
- W2018193208 sameAs 2018193208 @default.
- W2018193208 citedByCount "27" @default.
- W2018193208 countsByYear W20181932082013 @default.
- W2018193208 countsByYear W20181932082014 @default.
- W2018193208 countsByYear W20181932082015 @default.
- W2018193208 countsByYear W20181932082016 @default.
- W2018193208 countsByYear W20181932082017 @default.
- W2018193208 countsByYear W20181932082019 @default.
- W2018193208 countsByYear W20181932082020 @default.
- W2018193208 countsByYear W20181932082021 @default.
- W2018193208 countsByYear W20181932082022 @default.
- W2018193208 countsByYear W20181932082023 @default.
- W2018193208 crossrefType "journal-article" @default.
- W2018193208 hasAuthorship W2018193208A5006593300 @default.
- W2018193208 hasAuthorship W2018193208A5010335705 @default.
- W2018193208 hasAuthorship W2018193208A5021406539 @default.
- W2018193208 hasAuthorship W2018193208A5039348485 @default.
- W2018193208 hasAuthorship W2018193208A5073468417 @default.
- W2018193208 hasConcept C104293457 @default.
- W2018193208 hasConcept C106131492 @default.
- W2018193208 hasConcept C126322002 @default.
- W2018193208 hasConcept C126838900 @default.
- W2018193208 hasConcept C141379421 @default.
- W2018193208 hasConcept C151730666 @default.
- W2018193208 hasConcept C154945302 @default.
- W2018193208 hasConcept C163716698 @default.
- W2018193208 hasConcept C22597639 @default.
- W2018193208 hasConcept C2776731575 @default.
- W2018193208 hasConcept C2779751349 @default.
- W2018193208 hasConcept C2989005 @default.
- W2018193208 hasConcept C31972630 @default.
- W2018193208 hasConcept C41008148 @default.
- W2018193208 hasConcept C41578188 @default.
- W2018193208 hasConcept C44249647 @default.
- W2018193208 hasConcept C544519230 @default.
- W2018193208 hasConcept C71924100 @default.
- W2018193208 hasConcept C76826599 @default.
- W2018193208 hasConcept C86803240 @default.
- W2018193208 hasConceptScore W2018193208C104293457 @default.
- W2018193208 hasConceptScore W2018193208C106131492 @default.
- W2018193208 hasConceptScore W2018193208C126322002 @default.
- W2018193208 hasConceptScore W2018193208C126838900 @default.
- W2018193208 hasConceptScore W2018193208C141379421 @default.
- W2018193208 hasConceptScore W2018193208C151730666 @default.
- W2018193208 hasConceptScore W2018193208C154945302 @default.
- W2018193208 hasConceptScore W2018193208C163716698 @default.
- W2018193208 hasConceptScore W2018193208C22597639 @default.
- W2018193208 hasConceptScore W2018193208C2776731575 @default.
- W2018193208 hasConceptScore W2018193208C2779751349 @default.
- W2018193208 hasConceptScore W2018193208C2989005 @default.
- W2018193208 hasConceptScore W2018193208C31972630 @default.
- W2018193208 hasConceptScore W2018193208C41008148 @default.
- W2018193208 hasConceptScore W2018193208C41578188 @default.
- W2018193208 hasConceptScore W2018193208C44249647 @default.
- W2018193208 hasConceptScore W2018193208C544519230 @default.
- W2018193208 hasConceptScore W2018193208C71924100 @default.
- W2018193208 hasConceptScore W2018193208C76826599 @default.
- W2018193208 hasConceptScore W2018193208C86803240 @default.
- W2018193208 hasIssue "2" @default.
- W2018193208 hasLocation W20181932081 @default.
- W2018193208 hasLocation W20181932082 @default.
- W2018193208 hasOpenAccess W2018193208 @default.