Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018201768> ?p ?o ?g. }
- W2018201768 endingPage "524" @default.
- W2018201768 startingPage "505" @default.
- W2018201768 abstract "This paper develops a log-linear regression approach to estimate missing data in a sparse origin–destination (O–D) matrix assuming the sampled or observed O–D trips follow a good gravity pattern. The approach is tested with randomly selected samples from the known portions of 1997, 2002, and 2007 US Commodity Flow Survey (CFS) O–D value and tonnage matrices and validated with 2007 US O–D tonnage matrix at the state level. The missing data are also estimated for the 2007 CFS tonnage matrix with the best intercept and coefficients obtained using all known entries of the matrix. The concept of the approach can be extended beyond the gravity model to any strong mathematical pattern embedded in the known set of a sparse O–D matrix to estimate its missing cells." @default.
- W2018201768 created "2016-06-24" @default.
- W2018201768 creator A5018444326 @default.
- W2018201768 creator A5081220735 @default.
- W2018201768 date "2014-08-12" @default.
- W2018201768 modified "2023-10-06" @default.
- W2018201768 title "Origin–destination missing data estimation for freight transportation planning: a gravity model-based regression approach" @default.
- W2018201768 cites W1967032237 @default.
- W2018201768 cites W1976989582 @default.
- W2018201768 cites W1977288152 @default.
- W2018201768 cites W1981966078 @default.
- W2018201768 cites W1995315381 @default.
- W2018201768 cites W1996212582 @default.
- W2018201768 cites W2004234092 @default.
- W2018201768 cites W2005925093 @default.
- W2018201768 cites W2009118558 @default.
- W2018201768 cites W2013234229 @default.
- W2018201768 cites W2019663200 @default.
- W2018201768 cites W2021575873 @default.
- W2018201768 cites W2028893095 @default.
- W2018201768 cites W2038218627 @default.
- W2018201768 cites W2056520705 @default.
- W2018201768 cites W2060140077 @default.
- W2018201768 cites W2090681478 @default.
- W2018201768 cites W2126446298 @default.
- W2018201768 cites W2150043433 @default.
- W2018201768 cites W3020960878 @default.
- W2018201768 cites W4240995766 @default.
- W2018201768 cites W609436182 @default.
- W2018201768 doi "https://doi.org/10.1080/03081060.2014.927665" @default.
- W2018201768 hasPublicationYear "2014" @default.
- W2018201768 type Work @default.
- W2018201768 sameAs 2018201768 @default.
- W2018201768 citedByCount "11" @default.
- W2018201768 countsByYear W20182017682015 @default.
- W2018201768 countsByYear W20182017682018 @default.
- W2018201768 countsByYear W20182017682019 @default.
- W2018201768 countsByYear W20182017682020 @default.
- W2018201768 countsByYear W20182017682021 @default.
- W2018201768 countsByYear W20182017682022 @default.
- W2018201768 countsByYear W20182017682023 @default.
- W2018201768 crossrefType "journal-article" @default.
- W2018201768 hasAuthorship W2018201768A5018444326 @default.
- W2018201768 hasAuthorship W2018201768A5081220735 @default.
- W2018201768 hasConcept C105795698 @default.
- W2018201768 hasConcept C106487976 @default.
- W2018201768 hasConcept C111368507 @default.
- W2018201768 hasConcept C126255220 @default.
- W2018201768 hasConcept C127313418 @default.
- W2018201768 hasConcept C127413603 @default.
- W2018201768 hasConcept C149782125 @default.
- W2018201768 hasConcept C152877465 @default.
- W2018201768 hasConcept C155202549 @default.
- W2018201768 hasConcept C159985019 @default.
- W2018201768 hasConcept C162324750 @default.
- W2018201768 hasConcept C177264268 @default.
- W2018201768 hasConcept C192562407 @default.
- W2018201768 hasConcept C199360897 @default.
- W2018201768 hasConcept C201995342 @default.
- W2018201768 hasConcept C33923547 @default.
- W2018201768 hasConcept C36656581 @default.
- W2018201768 hasConcept C41008148 @default.
- W2018201768 hasConcept C48921125 @default.
- W2018201768 hasConcept C58489278 @default.
- W2018201768 hasConcept C87889798 @default.
- W2018201768 hasConcept C9357733 @default.
- W2018201768 hasConcept C96250715 @default.
- W2018201768 hasConceptScore W2018201768C105795698 @default.
- W2018201768 hasConceptScore W2018201768C106487976 @default.
- W2018201768 hasConceptScore W2018201768C111368507 @default.
- W2018201768 hasConceptScore W2018201768C126255220 @default.
- W2018201768 hasConceptScore W2018201768C127313418 @default.
- W2018201768 hasConceptScore W2018201768C127413603 @default.
- W2018201768 hasConceptScore W2018201768C149782125 @default.
- W2018201768 hasConceptScore W2018201768C152877465 @default.
- W2018201768 hasConceptScore W2018201768C155202549 @default.
- W2018201768 hasConceptScore W2018201768C159985019 @default.
- W2018201768 hasConceptScore W2018201768C162324750 @default.
- W2018201768 hasConceptScore W2018201768C177264268 @default.
- W2018201768 hasConceptScore W2018201768C192562407 @default.
- W2018201768 hasConceptScore W2018201768C199360897 @default.
- W2018201768 hasConceptScore W2018201768C201995342 @default.
- W2018201768 hasConceptScore W2018201768C33923547 @default.
- W2018201768 hasConceptScore W2018201768C36656581 @default.
- W2018201768 hasConceptScore W2018201768C41008148 @default.
- W2018201768 hasConceptScore W2018201768C48921125 @default.
- W2018201768 hasConceptScore W2018201768C58489278 @default.
- W2018201768 hasConceptScore W2018201768C87889798 @default.
- W2018201768 hasConceptScore W2018201768C9357733 @default.
- W2018201768 hasConceptScore W2018201768C96250715 @default.
- W2018201768 hasIssue "6" @default.
- W2018201768 hasLocation W20182017681 @default.
- W2018201768 hasOpenAccess W2018201768 @default.
- W2018201768 hasPrimaryLocation W20182017681 @default.
- W2018201768 hasRelatedWork W2031127365 @default.
- W2018201768 hasRelatedWork W2135760566 @default.
- W2018201768 hasRelatedWork W2250140425 @default.
- W2018201768 hasRelatedWork W2343747089 @default.