Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018202416> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2018202416 abstract "In this paper the problem of the efficient implementation of sparse matrix factorization on vector computers is considered. A fine-grain dynamic levelwise scheduling algorithm (DLSA) is proposed. DLSA takes into account the dependences between update operations, thus avoiding the recurrence problem. A simplified version of the algorithm (S-DLSA) can be employed to produce a suboptimal scheduling of the factorization operations. DLSA and S-DLSA are also applicable to all sparse matrix operations resulting in the modification of one-dimensional arrays. The scheduling procedures and the resulting vectorization-oriented numerical factorization have been implemented on a CRAY X-MP2/216 and a CRAY Y-MP8/464 computer. Test cases refer to real-life power systems with up to 12 000 buses. The maximum speed-ups achieved (with respect to a code based on standard sparsity programming) are close to 7 for complex matrices and 13 for real matrices." @default.
- W2018202416 created "2016-06-24" @default.
- W2018202416 creator A5021966405 @default.
- W2018202416 creator A5054097528 @default.
- W2018202416 creator A5074827115 @default.
- W2018202416 creator A5086397637 @default.
- W2018202416 date "1995-06-01" @default.
- W2018202416 modified "2023-09-27" @default.
- W2018202416 title "Dynamic levelwise scheduling for sparse matrix factorization on vector computers" @default.
- W2018202416 cites W1967228470 @default.
- W2018202416 cites W2032909695 @default.
- W2018202416 cites W2035908224 @default.
- W2018202416 cites W2044822901 @default.
- W2018202416 cites W2092395575 @default.
- W2018202416 cites W2092633005 @default.
- W2018202416 cites W2108740242 @default.
- W2018202416 cites W2126957159 @default.
- W2018202416 cites W2153189923 @default.
- W2018202416 doi "https://doi.org/10.1016/0378-7796(95)00944-d" @default.
- W2018202416 hasPublicationYear "1995" @default.
- W2018202416 type Work @default.
- W2018202416 sameAs 2018202416 @default.
- W2018202416 citedByCount "0" @default.
- W2018202416 crossrefType "journal-article" @default.
- W2018202416 hasAuthorship W2018202416A5021966405 @default.
- W2018202416 hasAuthorship W2018202416A5054097528 @default.
- W2018202416 hasAuthorship W2018202416A5074827115 @default.
- W2018202416 hasAuthorship W2018202416A5086397637 @default.
- W2018202416 hasConcept C106487976 @default.
- W2018202416 hasConcept C11413529 @default.
- W2018202416 hasConcept C121332964 @default.
- W2018202416 hasConcept C126255220 @default.
- W2018202416 hasConcept C158693339 @default.
- W2018202416 hasConcept C159985019 @default.
- W2018202416 hasConcept C163716315 @default.
- W2018202416 hasConcept C173608175 @default.
- W2018202416 hasConcept C187834632 @default.
- W2018202416 hasConcept C192562407 @default.
- W2018202416 hasConcept C206729178 @default.
- W2018202416 hasConcept C33923547 @default.
- W2018202416 hasConcept C37404715 @default.
- W2018202416 hasConcept C41008148 @default.
- W2018202416 hasConcept C41681595 @default.
- W2018202416 hasConcept C42355184 @default.
- W2018202416 hasConcept C56372850 @default.
- W2018202416 hasConcept C62520636 @default.
- W2018202416 hasConceptScore W2018202416C106487976 @default.
- W2018202416 hasConceptScore W2018202416C11413529 @default.
- W2018202416 hasConceptScore W2018202416C121332964 @default.
- W2018202416 hasConceptScore W2018202416C126255220 @default.
- W2018202416 hasConceptScore W2018202416C158693339 @default.
- W2018202416 hasConceptScore W2018202416C159985019 @default.
- W2018202416 hasConceptScore W2018202416C163716315 @default.
- W2018202416 hasConceptScore W2018202416C173608175 @default.
- W2018202416 hasConceptScore W2018202416C187834632 @default.
- W2018202416 hasConceptScore W2018202416C192562407 @default.
- W2018202416 hasConceptScore W2018202416C206729178 @default.
- W2018202416 hasConceptScore W2018202416C33923547 @default.
- W2018202416 hasConceptScore W2018202416C37404715 @default.
- W2018202416 hasConceptScore W2018202416C41008148 @default.
- W2018202416 hasConceptScore W2018202416C41681595 @default.
- W2018202416 hasConceptScore W2018202416C42355184 @default.
- W2018202416 hasConceptScore W2018202416C56372850 @default.
- W2018202416 hasConceptScore W2018202416C62520636 @default.
- W2018202416 hasLocation W20182024161 @default.
- W2018202416 hasOpenAccess W2018202416 @default.
- W2018202416 hasPrimaryLocation W20182024161 @default.
- W2018202416 hasRelatedWork W1518969538 @default.
- W2018202416 hasRelatedWork W1526130496 @default.
- W2018202416 hasRelatedWork W1585371964 @default.
- W2018202416 hasRelatedWork W1589986168 @default.
- W2018202416 hasRelatedWork W1592977960 @default.
- W2018202416 hasRelatedWork W1980946208 @default.
- W2018202416 hasRelatedWork W2013424510 @default.
- W2018202416 hasRelatedWork W2014986192 @default.
- W2018202416 hasRelatedWork W2044416352 @default.
- W2018202416 hasRelatedWork W2047695550 @default.
- W2018202416 hasRelatedWork W2051800546 @default.
- W2018202416 hasRelatedWork W2115915434 @default.
- W2018202416 hasRelatedWork W2127144731 @default.
- W2018202416 hasRelatedWork W2127568374 @default.
- W2018202416 hasRelatedWork W2133539877 @default.
- W2018202416 hasRelatedWork W2141886865 @default.
- W2018202416 hasRelatedWork W2143133118 @default.
- W2018202416 hasRelatedWork W2149850260 @default.
- W2018202416 hasRelatedWork W32838146 @default.
- W2018202416 hasRelatedWork W44937787 @default.
- W2018202416 isParatext "false" @default.
- W2018202416 isRetracted "false" @default.
- W2018202416 magId "2018202416" @default.
- W2018202416 workType "article" @default.