Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018205479> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2018205479 endingPage "1371" @default.
- W2018205479 startingPage "1355" @default.
- W2018205479 abstract "Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Balaeff A., Koudella C. R., Mahadevan L. and Schulten K. 2004Modelling DNA loops using continuum and statistical mechanics One contribution of 16 to a Theme ‘The mechanics of DNA’Phil. Trans. R. Soc. A.3621355–1371http://doi.org/10.1098/rsta.2004.1384SectionRestricted accessModelling DNA loops using continuum and statistical mechanics One contribution of 16 to a Theme ‘The mechanics of DNA’ A. Balaeff A. Balaeff Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Google Scholar Find this author on PubMed Search for more papers by this author , C. R. Koudella C. R. Koudella Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK () Google Scholar Find this author on PubMed Search for more papers by this author , L. Mahadevan L. Mahadevan Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK () Google Scholar Find this author on PubMed Search for more papers by this author and K. Schulten K. Schulten Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Google Scholar Find this author on PubMed Search for more papers by this author A. Balaeff A. Balaeff Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Google Scholar Find this author on PubMed Search for more papers by this author , C. R. Koudella C. R. Koudella Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK () Google Scholar Find this author on PubMed Search for more papers by this author , L. Mahadevan L. Mahadevan Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK () Google Scholar Find this author on PubMed Search for more papers by this author and K. Schulten K. Schulten Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Google Scholar Find this author on PubMed Search for more papers by this author Published:15 July 2004https://doi.org/10.1098/rsta.2004.1384AbstractThe classical Kirchhoff elastic–rod model applied to DNA is extended to account for sequence–dependent intrinsic twist and curvature, anisotropic bending rigidity, electrostatic force interactions, and overdamped Brownian motion in a solvent. The zero–temperature equilibrium rod model is then applied to study the structural basis of the function of the lac repressor protein in the lac operon of Escherichia coli. The structure of a DNA loop induced by the clamping of two distant DNA operator sites by lac repressor is investigated and the optimal geometries for the loop of length 76 bp are predicted. Further, the mimicked binding of catabolite gene activator protein (CAP) inside the loop provides solutions that might explain the experimentally observed synergy in DNA binding between the two proteins. Finally, a combined Monte Carlo and Brownian dynamics solver for a worm–like chain model is described and a preliminary analysis of DNA loop–formation kinetics is presented. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Biton Y (2018) Effects of Protein-Induced Local Bending and Sequence Dependence on the Configurations of Supercoiled DNA Minicircles, Journal of Chemical Theory and Computation, 10.1021/acs.jctc.7b01090, 14:4, (2063-2075), Online publication date: 10-Apr-2018. Chatzieleftheriou S, Adendorff M and Lagaros N (2016) Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures, Journal of Chemical Information and Modeling, 10.1021/acs.jcim.6b00356, 56:10, (1963-1978), Online publication date: 24-Oct-2016. Maghsoodi A, Chatterjee A, Andricioaei I and Perkins N (2016) A First Model of the Dynamics of the Bacteriophage T4 Injection Machinery, Journal of Computational and Nonlinear Dynamics, 10.1115/1.4033554, 11:4, Online publication date: 1-Jul-2016. Mata Almonacid P (2015) Explicit symplectic momentum-conserving time-stepping scheme for the dynamics of geometrically exact rods, Finite Elements in Analysis and Design, 10.1016/j.finel.2014.10.003, 96, (11-22), Online publication date: 1-Apr-2015. Maciejczyk M, Spasic A, Liwo A and Scheraga H (2014) DNA Duplex Formation with a Coarse-Grained Model, Journal of Chemical Theory and Computation, 10.1021/ct4006689, 10:11, (5020-5035), Online publication date: 11-Nov-2014. Prior C (2014) Helical Birods: An Elastic Model of Helically Wound Double-Stranded Rods, Journal of Elasticity, 10.1007/s10659-014-9472-7, 117:2, (231-277), Online publication date: 1-Dec-2014. Adhikari S, Saavedra Flores E, Scarpa F, Chowdhury R and Friswell M (2014) A Hybrid Atomistic Approach for the Mechanics of Deoxyribonucleic Acid Molecules, Journal of Nanotechnology in Engineering and Medicine, 10.1115/1.4027690, 4:4, Online publication date: 1-Nov-2013. Edens L, Brozik J and Keller D (2012) Coarse-Grained Model DNA: Structure, Sequences, Stems, Circles, Hairpins, The Journal of Physical Chemistry B, 10.1021/jp3009095, 116:51, (14735-14743), Online publication date: 27-Dec-2012. Chen J, Lee C, Teng H and Wang H (2012) Atomistic to Continuum Modeling of DNA Molecules Advances in Soft Matter Mechanics, 10.1007/978-3-642-19373-6_1, (1-53), . Cherstvy A (2010) Looping charged elastic rods: applications to protein-induced DNA loop formation, European Biophysics Journal, 10.1007/s00249-010-0628-5, 40:1, (69-80), Online publication date: 1-Jan-2011. Daniels B and Sethna J (2011) Nucleation at the DNA supercoiling transition, Physical Review E, 10.1103/PhysRevE.83.041924, 83:4 Teng H, Lee C and Chen J (2011) On the continuum formulation for modeling DNA loop formation, Interaction and multiscale mechanics, 10.12989/imm.2011.4.3.219, 4:3, (219-237), Online publication date: 25-Sep-2011. Hirsh A, Lillian T, Lionberger T and Perkins N (2011) DNA Modeling Reveals an Extended Lac Repressor Conformation in Classic In Vitro Binding Assays, Biophysical Journal, 10.1016/j.bpj.2011.06.040, 101:3, (718-726), Online publication date: 1-Aug-2011. Swigon D (2009) The Mathematics of DNA Structure, Mechanics, and Dynamics Mathematics of DNA Structure, Function and Interactions, 10.1007/978-1-4419-0670-0_14, (293-320), . Ma L, Yethiraj A, Chen X and Cui Q (2009) A Computational Framework for Mechanical Response of Macromolecules: Application to the Salt Concentration Dependence of DNA Bendability, Biophysical Journal, 10.1016/j.bpj.2009.01.047, 96:9, (3543-3554), Online publication date: 1-May-2009. Habibi M, Ribe N and Bonn D (2007) Coiling of Elastic Ropes, Physical Review Letters, 10.1103/PhysRevLett.99.154302, 99:15 Goyal S, Lillian T, Blumberg S, Meiners J, Meyhöfer E and Perkins N (2007) Intrinsic Curvature of DNA Influences LacR-Mediated Looping, Biophysical Journal, 10.1529/biophysj.107.112268, 93:12, (4342-4359), Online publication date: 1-Dec-2007. Shih C and Georghiou S (2006) Large-amplitude fast motions in double-stranded DNA driven by solvent thermal fluctuations, Biopolymers, 10.1002/bip.20444, 81:6, (450-463), Online publication date: 15-Apr-2006. Bon M, Marenduzzo D and Cook P (2006) Modeling a Self-Avoiding Chromatin Loop: Relation to the Packing Problem, Action-at-a-Distance, and Nuclear Context, Structure, 10.1016/j.str.2005.10.016, 14:2, (197-204), Online publication date: 1-Feb-2006. Gao M, Sotomayor M, Villa E, Lee E and Schulten K (2006) Molecular mechanisms of cellular mechanics, Physical Chemistry Chemical Physics, 10.1039/b606019f, 8:32, (3692), . Zhang Y, McEwen A, Crothers D and Levene S (2006) Statistical-Mechanical Theory of DNA Looping, Biophysical Journal, 10.1529/biophysj.105.070490, 90:6, (1903-1912), Online publication date: 1-Mar-2006. Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kalé L and Schulten K (2005) Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, 10.1002/jcc.20289, 26:16, (1781-1802), Online publication date: 1-Dec-2005. Villa E, Balaeff A and Schulten K (2005) Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation, Proceedings of the National Academy of Sciences, 10.1073/pnas.0409387102, 102:19, (6783-6788), Online publication date: 10-May-2005. Thompson J, Travers A and Thompson J (2004) An introduction to the mechanics of DNA, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362:1820, (1265-1279), Online publication date: 15-Jul-2004. Aksimentiev A, Heng J, Timp G and Schulten K (2004) Microscopic Kinetics of DNA Translocation through Synthetic Nanopores, Biophysical Journal, 10.1529/biophysj.104.042960, 87:3, (2086-2097), Online publication date: 1-Sep-2004. Villa E, Balaeff A, Mahadevan L and Schulten K (2004) Multiscale Method for Simulating Protein-DNA Complexes, Multiscale Modeling & Simulation, 10.1137/040604789, 2:4, (527-553), Online publication date: 1-Jan-2004. Towles K, Beausang J, Garcia H, Phillips R and Nelson P (2009) First-principles calculation of DNA looping in tethered particle experiments, Physical Biology, 10.1088/1478-3975/6/2/025001, 6:2, (025001) Kim Y, Kim D and Mayer C (2016) Structural Basis for Elastic Mechanical Properties of the DNA Double Helix, PLOS ONE, 10.1371/journal.pone.0153228, 11:4, (e0153228) This Issue15 July 2004Volume 362Issue 1820Theme Issue ‘The mechanics of DNA’ compiled by J. M. T. Thompson Article InformationDOI:https://doi.org/10.1098/rsta.2004.1384Published by:Royal SocietyPrint ISSN:1364-503XOnline ISSN:1471-2962History: Published online15/07/2004Published in print15/07/2004 License: Citations and impact KeywordsBrownian DynamicsCatabolite Gene Activator Protein (Cap)Lac RepressorElastic–Rod ModelDna LoopsLoop–Formation Kinetics" @default.
- W2018205479 created "2016-06-24" @default.
- W2018205479 creator A5029996336 @default.
- W2018205479 creator A5052913480 @default.
- W2018205479 creator A5089569876 @default.
- W2018205479 creator A5089762957 @default.
- W2018205479 date "2004-07-15" @default.
- W2018205479 modified "2023-10-18" @default.
- W2018205479 title "Modelling DNA loops using continuum and statistical mechanics One contribution of 16 to a Theme ‘The mechanics of DNA’" @default.
- W2018205479 cites W1504402903 @default.
- W2018205479 cites W1968129502 @default.
- W2018205479 cites W1971885360 @default.
- W2018205479 cites W1977776432 @default.
- W2018205479 cites W1977778400 @default.
- W2018205479 cites W1979049936 @default.
- W2018205479 cites W1989830340 @default.
- W2018205479 cites W1990708122 @default.
- W2018205479 cites W2009217296 @default.
- W2018205479 cites W2017837352 @default.
- W2018205479 cites W2037177064 @default.
- W2018205479 cites W2038164496 @default.
- W2018205479 cites W2048071682 @default.
- W2018205479 cites W2056023300 @default.
- W2018205479 cites W2062345361 @default.
- W2018205479 cites W2073432300 @default.
- W2018205479 cites W2073747644 @default.
- W2018205479 cites W2080688660 @default.
- W2018205479 cites W2081949485 @default.
- W2018205479 cites W2082781468 @default.
- W2018205479 cites W2083584270 @default.
- W2018205479 cites W2091051106 @default.
- W2018205479 cites W2100380699 @default.
- W2018205479 cites W2119429902 @default.
- W2018205479 cites W2123014757 @default.
- W2018205479 cites W2131404542 @default.
- W2018205479 cites W2134421334 @default.
- W2018205479 cites W2145610814 @default.
- W2018205479 cites W2145894851 @default.
- W2018205479 cites W2170235802 @default.
- W2018205479 cites W2171878324 @default.
- W2018205479 cites W4229769694 @default.
- W2018205479 cites W456191 @default.
- W2018205479 cites W6253552 @default.
- W2018205479 doi "https://doi.org/10.1098/rsta.2004.1384" @default.
- W2018205479 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15306455" @default.
- W2018205479 hasPublicationYear "2004" @default.
- W2018205479 type Work @default.
- W2018205479 sameAs 2018205479 @default.
- W2018205479 citedByCount "38" @default.
- W2018205479 countsByYear W20182054792012 @default.
- W2018205479 countsByYear W20182054792013 @default.
- W2018205479 countsByYear W20182054792014 @default.
- W2018205479 countsByYear W20182054792015 @default.
- W2018205479 countsByYear W20182054792016 @default.
- W2018205479 countsByYear W20182054792018 @default.
- W2018205479 crossrefType "journal-article" @default.
- W2018205479 hasAuthorship W2018205479A5029996336 @default.
- W2018205479 hasAuthorship W2018205479A5052913480 @default.
- W2018205479 hasAuthorship W2018205479A5089569876 @default.
- W2018205479 hasAuthorship W2018205479A5089762957 @default.
- W2018205479 hasConcept C121332964 @default.
- W2018205479 hasConcept C121864883 @default.
- W2018205479 hasConcept C57879066 @default.
- W2018205479 hasConcept C74650414 @default.
- W2018205479 hasConcept C84035572 @default.
- W2018205479 hasConcept C99874945 @default.
- W2018205479 hasConceptScore W2018205479C121332964 @default.
- W2018205479 hasConceptScore W2018205479C121864883 @default.
- W2018205479 hasConceptScore W2018205479C57879066 @default.
- W2018205479 hasConceptScore W2018205479C74650414 @default.
- W2018205479 hasConceptScore W2018205479C84035572 @default.
- W2018205479 hasConceptScore W2018205479C99874945 @default.
- W2018205479 hasIssue "1820" @default.
- W2018205479 hasLocation W20182054791 @default.
- W2018205479 hasLocation W20182054792 @default.
- W2018205479 hasOpenAccess W2018205479 @default.
- W2018205479 hasPrimaryLocation W20182054791 @default.
- W2018205479 hasRelatedWork W1557187315 @default.
- W2018205479 hasRelatedWork W1985262309 @default.
- W2018205479 hasRelatedWork W1985727819 @default.
- W2018205479 hasRelatedWork W2029182193 @default.
- W2018205479 hasRelatedWork W2052405123 @default.
- W2018205479 hasRelatedWork W2059482096 @default.
- W2018205479 hasRelatedWork W2140238042 @default.
- W2018205479 hasRelatedWork W2893684058 @default.
- W2018205479 hasRelatedWork W3048238211 @default.
- W2018205479 hasRelatedWork W927936606 @default.
- W2018205479 hasVolume "362" @default.
- W2018205479 isParatext "false" @default.
- W2018205479 isRetracted "false" @default.
- W2018205479 magId "2018205479" @default.
- W2018205479 workType "article" @default.