Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018242788> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2018242788 abstract "Many applications of MRI are facilitated by segmenting the volume spanned by the imagery into the various tissue types that are present. Intensity-based classification of MR images has proven to be problematic, even when advanced techniques such as non- parametric multi-channel methods are used. A persistent difficulty has been accommodating the spatial intensity inhomogeneities that are due to the equipment. This paper describes a statistical method that uses knowledge of tissue properties and intensity inhomogeneities to correct for these intensity inhomogeneities. Use of the Expectation-Maximization algorithm leads to a method (EM segmentation) for simultaneously estimating tissue class and the correcting gain field. The algorithm iterates two components to convergence: tissue classification, and gain field estimation. The result is a powerful new technique for segmenting and correcting MR images. An implementation of the method is discussed, and results are reported for segmentation of white matter and gray matter in gradient-echo and spin-echo images. Examples are shown for axial, coronal and sagittal (surface coil) images. For a given type of acquisition, intensity variations across patients, scans, and equipment have been accommodated without manual intervention in the segmentation. In this sense, the method is fully automatic for segmenting healthy brain tissue. An accuracy assessment was made in which the method was compared to manual segmentation, and to a method based on supervised multi-variate classification, in segmenting white matter and gray matter. The method was found to be consistent with manual segmentation, and closer to manual segmentation than the supervised method." @default.
- W2018242788 created "2016-06-24" @default.
- W2018242788 creator A5012263767 @default.
- W2018242788 creator A5021319515 @default.
- W2018242788 creator A5032727300 @default.
- W2018242788 creator A5053439821 @default.
- W2018242788 date "1994-09-09" @default.
- W2018242788 modified "2023-09-23" @default.
- W2018242788 title "<title>Statistical intensity correction and segmentation of MRI data</title>" @default.
- W2018242788 doi "https://doi.org/10.1117/12.185172" @default.
- W2018242788 hasPublicationYear "1994" @default.
- W2018242788 type Work @default.
- W2018242788 sameAs 2018242788 @default.
- W2018242788 citedByCount "30" @default.
- W2018242788 countsByYear W20182427882013 @default.
- W2018242788 countsByYear W20182427882019 @default.
- W2018242788 crossrefType "proceedings-article" @default.
- W2018242788 hasAuthorship W2018242788A5012263767 @default.
- W2018242788 hasAuthorship W2018242788A5021319515 @default.
- W2018242788 hasAuthorship W2018242788A5032727300 @default.
- W2018242788 hasAuthorship W2018242788A5053439821 @default.
- W2018242788 hasConcept C105795698 @default.
- W2018242788 hasConcept C124504099 @default.
- W2018242788 hasConcept C125308379 @default.
- W2018242788 hasConcept C144133560 @default.
- W2018242788 hasConcept C153180895 @default.
- W2018242788 hasConcept C154945302 @default.
- W2018242788 hasConcept C162853370 @default.
- W2018242788 hasConcept C182081679 @default.
- W2018242788 hasConcept C31972630 @default.
- W2018242788 hasConcept C33923547 @default.
- W2018242788 hasConcept C41008148 @default.
- W2018242788 hasConcept C49781872 @default.
- W2018242788 hasConcept C65885262 @default.
- W2018242788 hasConcept C89600930 @default.
- W2018242788 hasConceptScore W2018242788C105795698 @default.
- W2018242788 hasConceptScore W2018242788C124504099 @default.
- W2018242788 hasConceptScore W2018242788C125308379 @default.
- W2018242788 hasConceptScore W2018242788C144133560 @default.
- W2018242788 hasConceptScore W2018242788C153180895 @default.
- W2018242788 hasConceptScore W2018242788C154945302 @default.
- W2018242788 hasConceptScore W2018242788C162853370 @default.
- W2018242788 hasConceptScore W2018242788C182081679 @default.
- W2018242788 hasConceptScore W2018242788C31972630 @default.
- W2018242788 hasConceptScore W2018242788C33923547 @default.
- W2018242788 hasConceptScore W2018242788C41008148 @default.
- W2018242788 hasConceptScore W2018242788C49781872 @default.
- W2018242788 hasConceptScore W2018242788C65885262 @default.
- W2018242788 hasConceptScore W2018242788C89600930 @default.
- W2018242788 hasLocation W20182427881 @default.
- W2018242788 hasOpenAccess W2018242788 @default.
- W2018242788 hasPrimaryLocation W20182427881 @default.
- W2018242788 hasRelatedWork W1199768 @default.
- W2018242788 hasRelatedWork W1605773447 @default.
- W2018242788 hasRelatedWork W1606131697 @default.
- W2018242788 hasRelatedWork W1871239456 @default.
- W2018242788 hasRelatedWork W2017408522 @default.
- W2018242788 hasRelatedWork W2025405181 @default.
- W2018242788 hasRelatedWork W2025641888 @default.
- W2018242788 hasRelatedWork W2032398883 @default.
- W2018242788 hasRelatedWork W2073087131 @default.
- W2018242788 hasRelatedWork W2086393983 @default.
- W2018242788 hasRelatedWork W2101431981 @default.
- W2018242788 hasRelatedWork W2104095591 @default.
- W2018242788 hasRelatedWork W2115772934 @default.
- W2018242788 hasRelatedWork W2132499268 @default.
- W2018242788 hasRelatedWork W2137676365 @default.
- W2018242788 hasRelatedWork W2145447518 @default.
- W2018242788 hasRelatedWork W2156992893 @default.
- W2018242788 hasRelatedWork W2162630772 @default.
- W2018242788 hasRelatedWork W2171074980 @default.
- W2018242788 hasRelatedWork W2369334788 @default.
- W2018242788 isParatext "false" @default.
- W2018242788 isRetracted "false" @default.
- W2018242788 magId "2018242788" @default.
- W2018242788 workType "article" @default.