Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018252185> ?p ?o ?g. }
- W2018252185 endingPage "3962" @default.
- W2018252185 startingPage "3936" @default.
- W2018252185 abstract "Stochastic inflation can be viewed as a sequence of two-step processes. In the first step a stochastic impulse from short-distance quantum fluctuations acts on long waves---the interaction. In the second step the long waves evolve semiclassically---the propagation. Both steps must be developed to address whether fluctuations for cosmic structure formation may be non-Gaussian. We describe a formalism for following the nonlinear propagation of long-wavelength metric and scalar-field fluctuations. We perform an expansion in spatial gradients of the Arnowitt-Deser-Misner equations and we retain only terms up to first order. At each point the fields obey evolution equations like those in a homogeneous universe, but now described by a local scale factor ${e}^{ensuremath{alpha}}$ and Hubble expansion rate $H$. However, the different points are joined together through the momentum constraint equation. The gradient expansion is appropriate for inflation if the long-wave fields are smoothed over scales below ${e}^{ensuremath{-}ensuremath{alpha}}{H}^{ensuremath{-}1}$. Our equations are naturally described in the Einstein-Hamilton-Jacobi framework, which governs an ensemble of inhomogeneous universes, and which may be interpreted as a semiclassical approximation to the quantum theory. We find that the Hubble parameter, which is a function of the local values of the scalar field, obeys a separated Hamilton-Jacobi equation that also governs the semiclassical phase of the wave functional. In our approximation, time hypersurface changes leave the equations invariant. However, the stochastic impulses that change the field initial conditions are most simply given on uniform expansion factor hypersurfaces whereas propagation is most easily solved on uniform Hubble hypersurfaces, in terms of $ensuremath{alpha}({x}^{j},H)$, the nonlinear analog of $ensuremath{zeta}$ of linear perturbation theory; we therefore pay special attention to hypersurface shifting. In particular, we describe the transformation process for the fluctuation probability functional. Exact general solutions are found for the case of a single scalar field interacting through an exponential potential. For example, we show that quantum corrections to long-wavelength evolution of the metric are characteristically small using exact Green's-function solutions of the Wheeler-DeWitt equation for this potential. Approximate analytic solutions to our classical system for slowly evolving multiple scalar fields are also easy to obtain in this formalism, contrasting with previous numerical approaches." @default.
- W2018252185 created "2016-06-24" @default.
- W2018252185 creator A5011882675 @default.
- W2018252185 creator A5032242568 @default.
- W2018252185 date "1990-12-15" @default.
- W2018252185 modified "2023-10-10" @default.
- W2018252185 title "Nonlinear evolution of long-wavelength metric fluctuations in inflationary models" @default.
- W2018252185 cites W1590390162 @default.
- W2018252185 cites W169458625 @default.
- W2018252185 cites W1963581978 @default.
- W2018252185 cites W1970184513 @default.
- W2018252185 cites W1973861971 @default.
- W2018252185 cites W1984327402 @default.
- W2018252185 cites W1984652555 @default.
- W2018252185 cites W1987010236 @default.
- W2018252185 cites W1987990117 @default.
- W2018252185 cites W1992024693 @default.
- W2018252185 cites W1992204683 @default.
- W2018252185 cites W2005276626 @default.
- W2018252185 cites W2012869970 @default.
- W2018252185 cites W2013420326 @default.
- W2018252185 cites W2017483000 @default.
- W2018252185 cites W2020878177 @default.
- W2018252185 cites W2022354167 @default.
- W2018252185 cites W2028001668 @default.
- W2018252185 cites W2029044374 @default.
- W2018252185 cites W2035784745 @default.
- W2018252185 cites W2060112160 @default.
- W2018252185 cites W2064185701 @default.
- W2018252185 cites W2066089306 @default.
- W2018252185 cites W2081248580 @default.
- W2018252185 cites W2090794178 @default.
- W2018252185 cites W2092554079 @default.
- W2018252185 cites W2092764739 @default.
- W2018252185 cites W2094806103 @default.
- W2018252185 cites W2127482275 @default.
- W2018252185 cites W2134990923 @default.
- W2018252185 cites W2138259748 @default.
- W2018252185 cites W2147762346 @default.
- W2018252185 cites W2164459358 @default.
- W2018252185 cites W2169912865 @default.
- W2018252185 cites W3093381660 @default.
- W2018252185 cites W4233770405 @default.
- W2018252185 doi "https://doi.org/10.1103/physrevd.42.3936" @default.
- W2018252185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10012808" @default.
- W2018252185 hasPublicationYear "1990" @default.
- W2018252185 type Work @default.
- W2018252185 sameAs 2018252185 @default.
- W2018252185 citedByCount "870" @default.
- W2018252185 countsByYear W20182521852012 @default.
- W2018252185 countsByYear W20182521852013 @default.
- W2018252185 countsByYear W20182521852014 @default.
- W2018252185 countsByYear W20182521852015 @default.
- W2018252185 countsByYear W20182521852016 @default.
- W2018252185 countsByYear W20182521852017 @default.
- W2018252185 countsByYear W20182521852018 @default.
- W2018252185 countsByYear W20182521852019 @default.
- W2018252185 countsByYear W20182521852020 @default.
- W2018252185 countsByYear W20182521852021 @default.
- W2018252185 countsByYear W20182521852022 @default.
- W2018252185 countsByYear W20182521852023 @default.
- W2018252185 crossrefType "journal-article" @default.
- W2018252185 hasAuthorship W2018252185A5011882675 @default.
- W2018252185 hasAuthorship W2018252185A5032242568 @default.
- W2018252185 hasConcept C110521144 @default.
- W2018252185 hasConcept C121332964 @default.
- W2018252185 hasConcept C172790937 @default.
- W2018252185 hasConcept C20154449 @default.
- W2018252185 hasConcept C26405456 @default.
- W2018252185 hasConcept C535169671 @default.
- W2018252185 hasConcept C62520636 @default.
- W2018252185 hasConcept C74650414 @default.
- W2018252185 hasConcept C84114770 @default.
- W2018252185 hasConceptScore W2018252185C110521144 @default.
- W2018252185 hasConceptScore W2018252185C121332964 @default.
- W2018252185 hasConceptScore W2018252185C172790937 @default.
- W2018252185 hasConceptScore W2018252185C20154449 @default.
- W2018252185 hasConceptScore W2018252185C26405456 @default.
- W2018252185 hasConceptScore W2018252185C535169671 @default.
- W2018252185 hasConceptScore W2018252185C62520636 @default.
- W2018252185 hasConceptScore W2018252185C74650414 @default.
- W2018252185 hasConceptScore W2018252185C84114770 @default.
- W2018252185 hasIssue "12" @default.
- W2018252185 hasLocation W20182521851 @default.
- W2018252185 hasLocation W20182521852 @default.
- W2018252185 hasOpenAccess W2018252185 @default.
- W2018252185 hasPrimaryLocation W20182521851 @default.
- W2018252185 hasRelatedWork W2006672062 @default.
- W2018252185 hasRelatedWork W2057573003 @default.
- W2018252185 hasRelatedWork W2058234182 @default.
- W2018252185 hasRelatedWork W2069254903 @default.
- W2018252185 hasRelatedWork W2079608043 @default.
- W2018252185 hasRelatedWork W2088815529 @default.
- W2018252185 hasRelatedWork W2989701336 @default.
- W2018252185 hasRelatedWork W3101831209 @default.
- W2018252185 hasRelatedWork W3172457662 @default.
- W2018252185 hasRelatedWork W4322503182 @default.
- W2018252185 hasVolume "42" @default.