Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018278506> ?p ?o ?g. }
- W2018278506 endingPage "442" @default.
- W2018278506 startingPage "439" @default.
- W2018278506 abstract "Nonarteritic anterior ischemic optic neuropathy (NAION)1Hayreh S.S. Anterior ischaemic optic neuropathy. III. Treatment, prophylaxis, and differential diagnosis.Br J Ophthalmol. 1974; 58: 981-989Crossref PubMed Scopus (102) Google Scholar has been the subject of numerous publications and editorials. Yet, meaningful progress toward understanding the pathogenesis of this entity has been limited.2Lessell S. Nonarteritic anterior ischemic optic neuropathy: enigma variations.Arch Ophthalmol. 1999; 117: 386-388Crossref PubMed Scopus (62) Google Scholar As the term “ischemic” would indicate, investigators have focused their efforts on defending a vascular cause.3Hayreh SS. In: Ischemic Optic Neuropathies, Chapters 14–18. Berlin Heidelberg: Springer-Verlag; 2011:265–424.Google Scholar, 4Miller N.R. Arnold A.C. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy.Eye. 2015; 29: 65-79Crossref PubMed Scopus (125) Google Scholar, 5Levin L.A. Danesh-Meyer H.V. Hypothesis: a venous etiology for nonarteritic anterior ischemic optic neuropathy.Arch Ophthalmol. 2008; 126: 1582-1585Crossref PubMed Scopus (73) Google Scholar What is the evidence for ischemia in this entity that, by histopathologic6Schatz N.J. Smith J.L. Non-tumor causes of the Foster Kennedy syndrome.J Neurosurg. 1967; 27: 37-44Crossref PubMed Scopus (39) Google Scholar, 7Quigley H.A. Miller N.R. Green W.R. The pattern of optic nerve fiber loss in anterior ischemic optic neuropathy.Am J Ophthalmol. 1985; 100: 769-776Abstract Full Text PDF PubMed Scopus (53) Google Scholar, 8Tesser R.A. Niendorf E.R. Levin L.A. The morphology of an infarct in nonarteritic anterior ischemic optic neuropathy.Ophthalmology. 2003; 110: 2031-2035Abstract Full Text Full Text PDF PubMed Scopus (109) Google Scholar and observational ophthalmology, first affects the prelaminar optic disc? The fact that vascular abnormalities such as disc hemorrhages and swelling are present at the time of visual loss, followed by peripapillary vascular narrowing and ensuing disc pallor, is enticing, but not etiologically conclusive. Unlike ischemic neuropathy in giant cell arteritis in which short posterior ciliary arteries are affected, with loss of supplied tissue leading to increased laminar cupping,9Danesh-Meyer H. Savino P.J. Spaeth G.L. Gamble G.D. Comparison of arteritis and nonarteritic anterior ischemic optic neuropathies with the Heidelberg Retina Tomograph.Ophthalmology. 2005; 112: 1104-1112Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar such findings have never been demonstrated in NAION. Fluorescein and indocyanine green angiography demonstrate changes at the prelaminar disc surface alone, uncorrelated to changes in visual field or in neural tissue, and not at the deeper levels supplied by the ciliochoroidal and central retinal vasculature.10Reuscher A. Chromek W. Kommerell G. Visual field defects and fluorescein angiography in acute anterior ischemic optic neuropathy.Klin Monbl Augenheilkd. 1978; 173 ([in German]): 69-74PubMed Google Scholar, 11Arnold A.C. Hepler R.S. Fluorescein angiography in acute nonarteritic anterior ischemic optic neuropathy.Am J Ophthalmol. 1994; 117: 222-230Abstract Full Text PDF PubMed Scopus (123) Google Scholar, 12Oto S. Yilmaz G. Cakmakci S. Aydin P. Indocyanine green and fluorescein angiography in nonarteritic anterior ischemic optic neuropathy.Retina. 2002; 22: 187-191Crossref PubMed Scopus (39) Google Scholar Whiteness with disc swelling has been accepted as a sign of ischemia, but there is both optic disc and retinal evidence that such whiteness is indicative of axoplasmic stasis (cotton wool spots) that may also occur simply from anatomic distortion of axons13McLeod D. Marshall J. Kohner E.M. Role of axoplasmic transport in the pathophysiology of ischemic disc swelling.Br J Ophthalmol. 1980; 64: 247-261Crossref PubMed Scopus (88) Google Scholar, 14McLeod D. Why cotton wool spots should not be regarded as retinal nerve fiber layer infarcts.Br J Ophthalmol. 2005; 89: 229-237Crossref PubMed Scopus (72) Google Scholar, 15McLeod D. Marshall J. Kohner E.M. Bird A.C. The role of axoplasmic transport in the pathogenesis of retinal cotton wool spots.Br J Ophthalmol. 1977; 61: 177-191Crossref PubMed Scopus (111) Google Scholar, 16Michels R.G. Vitreous surgery for macular pucker.Am J Ophthalmol. 1981; 92: 628-639Abstract Full Text PDF PubMed Scopus (112) Google Scholar rather than occlusion of vessels.17Arroyo J.G. Irvine A.R. Retinal distortion and cottonwool spots associated with epiretinal membrane contraction.Ophthalmology. 1995; 102: 662-668Abstract Full Text PDF PubMed Scopus (24) Google Scholar, 18Roe R.H. McDonald H.R. Fu A.D. et al.Unexplained vision loss following removal of epiretinal membrane.Br J Ophthalmol. 2010; 94: 1033-1039Crossref PubMed Scopus (6) Google Scholar This may also occur from fracture of the axonal cytoskeleton and frank membrane disruption with axoplasmic “leakage.” In giant cell arteritis, retrolaminar vascular occlusion will cause axoplasmic accumulation anteriorly, with a white appearance at the level of the optic disc.17Arroyo J.G. Irvine A.R. Retinal distortion and cottonwool spots associated with epiretinal membrane contraction.Ophthalmology. 1995; 102: 662-668Abstract Full Text PDF PubMed Scopus (24) Google Scholar, 18Roe R.H. McDonald H.R. Fu A.D. et al.Unexplained vision loss following removal of epiretinal membrane.Br J Ophthalmol. 2010; 94: 1033-1039Crossref PubMed Scopus (6) Google Scholar If disc ischemia were prelaminar, however, white axoplasmic accumulation and swelling would develop upstream predominately in peripapillary retina. The immediate development of prelaminar disc changes with the onset of clinical symptomatology precludes slow orthograde axoplasmic accumulation as responsible. The search for a systemic vascular denominator for this disease has been futile.19Beck R.W. Savino P.J. Repka M.X. et al.Optic disc structure in anterior ischemic optic neuropathy.Ophthalmology. 1984; 91: 1334-1337Abstract Full Text PDF PubMed Scopus (193) Google Scholar, 20Jacobson D.M. Vierkant R.A. Belongia E.A. Nonarteritic anterior ischemic optic neuropathy. A case-control study of potential risk factors.Arch Ophthalmol. 1997; 115: 1403-1407Crossref PubMed Scopus (143) Google Scholar With so little to show for it, it seems worth questioning the underlying presumption of ischemia as an etiologic factor for so-called NAION. When the name of an entity itself may be a misnomer, it can be especially difficult to escape erroneous interpretations of pathophysiology. Indeed, the mechanism of this disease needs to be reanalyzed in a completely different direction. Numerous examples exist of retinal damage accompanied by hemorrhages and other defects in response to spontaneous or surgical peeling of the vitreous and internal limiting membrane.16Michels R.G. Vitreous surgery for macular pucker.Am J Ophthalmol. 1981; 92: 628-639Abstract Full Text PDF PubMed Scopus (112) Google Scholar, 21Kerrison J.B. Haller J.A. Elman M. Miller N.R. Visual field loss following vitreous surgery.Arch Ophthalmol. 1996; 114: 564-569Crossref PubMed Scopus (87) Google Scholar, 22Paques M. Massin P. Santiago P.Y. et al.Visual field loss after vitrectomy for full-thickness macular holes.Am J Ophthalmol. 1997; 124: 88-94Abstract Full Text PDF PubMed Scopus (58) Google Scholar, 23Kim C.Y. Lee J.H. Lee S.J. et al.Visual field defect caused by nerve fiber layer damage associated with an internal limiting lamina defect after uneventful epiretinal membrane surgery.Am J Ophthalmol. 2002; 133: 569-571Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 24Taban M. Lewis H. Lee M.S. Nonarteritic anterior ischemic optic neuropathy and ‘visual field defects’ following vitrectomy: could they be related?.Graefes Arch Clin Exp Ophthalmol. 2007; 245: 600-605Crossref PubMed Scopus (24) Google Scholar Where vitreomacular attachments are present, microcystic changes can be noted in a nonvascular pattern.25Jaffe N.S. Vitreous traction at the posterior pole of the fundus due to alterations in the vitreous posterior.Trans Am Acad Ophthalmol Otolaryngol. 1967; 71: 642-652PubMed Google Scholar, 26Jaffe N.S. Complications of acute posterior vitreous detachment.Arch Ophthalmol. 1968; 79: 568-571Crossref PubMed Scopus (91) Google Scholar, 27Yamaguchi Y. Otani T. Kishi S. Resolution of diabetic cystoid macular edema associated with spontaneous vitreoretinal separation.Am J Ophthalmol. 2003; 135: 116-118Abstract Full Text Full Text PDF PubMed Scopus (33) Google Scholar, 28Johnson M.W. Tractional cystoid macular edema: a subtle variant of the vitreomacular traction syndrome.Am J Ophthalmol. 2005; 140: 184-192Abstract Full Text Full Text PDF PubMed Scopus (84) Google Scholar, 29Gelfand J.M. Nolan R. Schwartz D.M. et al.Microcystic macular oedema in multiple sclerosis is associated with disease severity.Brain. 2012; 135: 1786-1793Crossref PubMed Scopus (236) Google Scholar, 30Barboni P. Carelli V. Savini G. et al.Microcystic macular degeneration from optic neuropathy: not inflammatory, not trans-synaptic degeneration.Brain. 2013; 136: e239Crossref PubMed Scopus (73) Google Scholar, 31Lujan B.J. Horton J.C. Microcysts in the inner nuclear layer from optic atrophy are caused by retrograde trans-synaptic degeneration combined with vitreous traction on the retinal surface.Brain. 2013; 136: e260Crossref PubMed Scopus (36) Google Scholar, 32Sigler E.J. Randolph J.C. Charles S. Delayed onset inner nuclear layer cystic changes following internal limiting membrane removal for epimacular membrane.Graefes Arch Clin Exp Ophthalmol. 2013; 251: 1679-1685Crossref PubMed Scopus (40) Google Scholar, 33Wolff B. Azar G. Vasseur V. et al.Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study.J Ophthalmol. 2014; 2014: 395189PubMed Google Scholar, 34Theodossiadis P.G. Theodoropoulou S. Stamatiou P. et al.Photoreceptor layer changes overlying drusen in eyes with age-related macular degeneration associated with vitreomacular traction.Eur J Ophthalmol. 2014; 24: 582-592Crossref PubMed Scopus (4) Google Scholar Disc tissues including the peripapillary area are also susceptible to vitreous separation, but the effect of such separation has, in years past, been neglected. Traction and separation of the vitreous from an optic disc can alter its structure.35De Vries S. Retinal haemorrhages in posterior vitreous detachment.Ophthalmologica. 1951; 122: 245-248Crossref PubMed Scopus (7) Google Scholar, 36Roth A.M. Foos R.Y. Surface structure of the optic nerve head. 1. Epipapillary membranes.Am J Ophthalmol. 1972; 74: 977-985Abstract Full Text PDF PubMed Scopus (46) Google Scholar, 37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar A range of possibilities can occur from mere subclinical trauma to total axonal damage. Only fine basal lamina overlies the optic disc and thin-to-no internal limiting membrane over nearby vessels, with focal gaps in these membranes thus allowing for intimate and firm direct vitreo-glial-axonal and vitreovascular attachments.36Roth A.M. Foos R.Y. Surface structure of the optic nerve head. 1. Epipapillary membranes.Am J Ophthalmol. 1972; 74: 977-985Abstract Full Text PDF PubMed Scopus (46) Google Scholar, 37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar, 38Foos R.Y. Posterior vitreous detachment.Trans Am Acad Ophthalmol Otolaryngol. 1972; 76: 480-497PubMed Google Scholar, 39Foos R.Y. Vitreoretinal juncture; topographical variations.Invest Ophthalmol Vis Sci. 1972; 11: 801-808Google Scholar, 40Foos R.Y. Vitreoretinal juncture over retinal vessels.Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1977; 204: 223-234Crossref PubMed Scopus (51) Google Scholar, 41Brasseur G. Décollement postérieur du vitré.in: Brasseur G. Pathologie du vitré. Masson, Société Française d’Ophtalmologie, Paris, France2003: 79-115Google Scholar The flat disc with little or no cup, the so-called disc at risk,42Burde R.M. Optic disk risk factors for non-arteritic anterior ischemic optic neuropathy.Am J Ophthalmol. 1993; 116: 759-764Abstract Full Text PDF PubMed Scopus (177) Google Scholar has fascinated investigators and is the substrate in which so-called NAION occurs. It must be important because it is so clearly associated with this entity,19Beck R.W. Savino P.J. Repka M.X. et al.Optic disc structure in anterior ischemic optic neuropathy.Ophthalmology. 1984; 91: 1334-1337Abstract Full Text PDF PubMed Scopus (193) Google Scholar, 43Feit R.H. Tomsak R.L. Ellenberger Jr., C. Structural factors in the pathogenesis of ischemic optic neuropathy.Am J Ophthalmol. 1984; 98: 105-108Abstract Full Text PDF PubMed Scopus (105) Google Scholar, 44Beck R.W. Savino P.J. Repka M.X. et al.Structural factors in the pathogenesis of ischemic optic neuropathy.Am J Ophthalmol. 1984; 98: 649-650Abstract Full Text PDF PubMed Scopus (5) Google Scholar exceptions notwithstanding.45Parsa C.F. Muci-Mendoza R. Hoyt W.F. Anterior ischemic optic neuropathy in a disc with a cup: an exception to the rule.J Neuroophthalmol. 1998; 18: 169-170Crossref PubMed Google Scholar Vitreopapillary attachments are firmer on cupless discs; the fine basal lamina has a thick layer of astrocytes overlying axons centrally46Rao N.A. Spencer W.H. Optic Nerve.in: 4th ed. Ophthalmic Pathology: An Atlas and Textbook. Vol. 1. Saunders, Philadelphia, PA1996: 513-622Google Scholar and epipapillary membranes extend more broadly and firmly over parapapillary retina possessing focal gaps in its internal limiting membrane,36Roth A.M. Foos R.Y. Surface structure of the optic nerve head. 1. Epipapillary membranes.Am J Ophthalmol. 1972; 74: 977-985Abstract Full Text PDF PubMed Scopus (46) Google Scholar, 37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar, 39Foos R.Y. Vitreoretinal juncture; topographical variations.Invest Ophthalmol Vis Sci. 1972; 11: 801-808Google Scholar whereas separation occurs more precociously in diabetic persons.47Foos R.Y. Kreiger A.E. Forsythe A.B. Zakka K.A. Posterior vitreous detachment in diabetic subjects.Ophthalmology. 1980; 87: 122-128Abstract Full Text PDF PubMed Scopus (58) Google Scholar, 48Kroll P. Wiegand W. Schmidt J. Vitreopapillary traction in proliferative diabetic vitreoretinopathy.Br J Ophthalmol. 1999; 83: 261-264Crossref PubMed Scopus (58) Google Scholar, 49Almog Y. Goldstein M. Visual outcome in eyes with asymptomatic optic disc edema.J Neuroophthalmol. 2003; 23: 204-207Crossref PubMed Scopus (33) Google Scholar In the age groups in which vitreous synchysis and partial detachment is noted,50Pischel D.K. Detachment of the vitreous as seen with slit-lamp examination.Am J Ophthalmol. 1953; 36: 1497-1507PubMed Google Scholar, 51Hikichi T. Trempe C.L. Relationship between floaters, light flashes, or both, and complications of posterior vitreous detachment.Am J Ophthalmol. 1994; 117: 593-598Abstract Full Text PDF PubMed Scopus (68) Google Scholar, 52Yonemoto J. Noda Y. Masuhara N. Ohno S. Age of onset of posterior vitreous detachment.Curr Opin Ophthalmol. 1996; 7: 73-76Crossref PubMed Scopus (19) Google Scholar, 53Uchino E. Uemura A. Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography.Arch Ophthalmol. 2001; 119: 1475-1479Crossref PubMed Scopus (235) Google Scholar and in which so-called NAION also occurs,4Miller N.R. Arnold A.C. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy.Eye. 2015; 29: 65-79Crossref PubMed Scopus (125) Google Scholar a spectrum of consequences of vitreopapillary traction and separation are now being recognized. Vitreous tractional forces transmitted to photoreceptors may induce phosphenes.25Jaffe N.S. Vitreous traction at the posterior pole of the fundus due to alterations in the vitreous posterior.Trans Am Acad Ophthalmol Otolaryngol. 1967; 71: 642-652PubMed Google Scholar, 35De Vries S. Retinal haemorrhages in posterior vitreous detachment.Ophthalmologica. 1951; 122: 245-248Crossref PubMed Scopus (7) Google Scholar, 50Pischel D.K. Detachment of the vitreous as seen with slit-lamp examination.Am J Ophthalmol. 1953; 36: 1497-1507PubMed Google Scholar, 54Witkin A.J. Wojtkowski M. Reichel E. et al.Photoreceptor disruption secondary to posterior vitreous detachment as visualized using high-speed ultrahigh-resolution optical coherence tomography.Arch Ophthalmol. 2007; 125: 1579-1580Crossref PubMed Scopus (6) Google Scholar Via the vitreo-glial-axonal attachments that exist, vitreous detachment can also rupture glial cells.36Roth A.M. Foos R.Y. Surface structure of the optic nerve head. 1. Epipapillary membranes.Am J Ophthalmol. 1972; 74: 977-985Abstract Full Text PDF PubMed Scopus (46) Google Scholar, 37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar, 39Foos R.Y. Vitreoretinal juncture; topographical variations.Invest Ophthalmol Vis Sci. 1972; 11: 801-808Google Scholar, 41Brasseur G. Décollement postérieur du vitré.in: Brasseur G. Pathologie du vitré. Masson, Société Française d’Ophtalmologie, Paris, France2003: 79-115Google Scholar, 55Balazs E.A. Functional anatomy of the vitreus.in: Biomedical Foundations of Ophthalmology. Vol. 1. Harper & Row, Philadelphia, PA1984: 1-16Google Scholar Electrolyte imbalances may initiate a wave of depolarization via ephaptic transmission, with spreading depression a cause of amaurosis fugax.56Coppeto J.R. Migraine-like accompaniments of vitreous detachment.Neuro-ophthalmology. 1988; 8: 197-203Crossref Scopus (1) Google Scholar, 57Hoyt W.F. Transient monocular vision loss: a historical perspective.Ophthalmol Clin North Am. 1996; 9: 323-325Google Scholar Vitreous traction can kink or distort axons to slow signaling58Ogino T. Takeda M. Suzuki Y. et al.Vitreopapillary traction with temporally optic nerve dysfunction.Neuro-ophthalmol Jpn. 2005; 22 ([in Japanese]): 405-409Google Scholar with gaze-evoked amaurosis.59Katz B. Hoyt W.F. Gaze-evoked amaurosis from vitreopapillary traction.Am J Ophthalmol. 2005; 139: 631-637Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar Vitreopapillary traction can cause disc elevation49Almog Y. Goldstein M. Visual outcome in eyes with asymptomatic optic disc edema.J Neuroophthalmol. 2003; 23: 204-207Crossref PubMed Scopus (33) Google Scholar, 60Gordon R.N. Burde R.M. Slamovits T. Asymptomatic optic disc edema.J Neuroophthalmol. 1997; 17: 29-32Crossref PubMed Scopus (16) Google Scholar, 61Wisotsky B.J. Magat-Gordon C.B. Puklin J.E. Vitreopapillary traction as a cause of elevated optic nerve head.Am J Ophthalmol. 1998; 126: 137-139Abstract Full Text Full Text PDF PubMed Scopus (23) Google Scholar, 62Hedges 3rd, T.R. Flattem N.L. Bagga A. Vitreopapillary traction confirmed by optical coherence tomography.Arch Ophthalmol. 2006; 124: 279-281Crossref PubMed Scopus (26) Google Scholar, 63Houle E. Miller N.R. Bilateral vitreopapillary traction demonstrated by optical coherence tomography mistaken for papilledema.Case Rep Ophthalmol Med. 2012; 2012: 682659PubMed Google Scholar and irregular dilatation of the surface vessels. Peripapillary traction also may persist through epipapillary membrane attachments,36Roth A.M. Foos R.Y. Surface structure of the optic nerve head. 1. Epipapillary membranes.Am J Ophthalmol. 1972; 74: 977-985Abstract Full Text PDF PubMed Scopus (46) Google Scholar, 37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar, 38Foos R.Y. Posterior vitreous detachment.Trans Am Acad Ophthalmol Otolaryngol. 1972; 76: 480-497PubMed Google Scholar, 39Foos R.Y. Vitreoretinal juncture; topographical variations.Invest Ophthalmol Vis Sci. 1972; 11: 801-808Google Scholar which, when avulsed, appear as Weiss's ring. Peripapillary photoreceptors may become dysfunctional or detached, giving rise to an enlarged blind spot. Such disc elevation may persist for long periods until the traction is resolved. Where internal limiting membrane is thinned or absent, particularly over disc vessels, vitreovascular attachments exist.37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar, 38Foos R.Y. Posterior vitreous detachment.Trans Am Acad Ophthalmol Otolaryngol. 1972; 76: 480-497PubMed Google Scholar, 39Foos R.Y. Vitreoretinal juncture; topographical variations.Invest Ophthalmol Vis Sci. 1972; 11: 801-808Google Scholar, 40Foos R.Y. Vitreoretinal juncture over retinal vessels.Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1977; 204: 223-234Crossref PubMed Scopus (51) Google Scholar, 41Brasseur G. Décollement postérieur du vitré.in: Brasseur G. Pathologie du vitré. Masson, Société Française d’Ophtalmologie, Paris, France2003: 79-115Google Scholar, 64Busacca A. Biomicroscopie de la papille.in: Biomicroscopie et Histopathologie de l’Œil. Vol. III: Corps Vitré-Biomicroscopie du Fond de l’Œil. Schweizer Druck- und Verlagshaus, Zurich, Switzerland1967: 346-347Google Scholar Vitreous shearing and separation from blood vessels may be accompanied by damage to the vascular walls and leakage followed by reactive gliosis. These frequently overlooked changes occur most visibly within short segments of peripapillary arteries. The artery becomes constricted proximally, but is of normal diameter more distally. Such findings may be a diagnostic characteristic and hallmark of vitreovascular separation. This “fundal narrowing” with sheathing is its delayed effect, “footprints in the snow” of disturbed vitreovascular attachments. Vitreous separation also may cause tearing of vessels.16Michels R.G. Vitreous surgery for macular pucker.Am J Ophthalmol. 1981; 92: 628-639Abstract Full Text PDF PubMed Scopus (112) Google Scholar, 21Kerrison J.B. Haller J.A. Elman M. Miller N.R. Visual field loss following vitreous surgery.Arch Ophthalmol. 1996; 114: 564-569Crossref PubMed Scopus (87) Google Scholar, 22Paques M. Massin P. Santiago P.Y. et al.Visual field loss after vitrectomy for full-thickness macular holes.Am J Ophthalmol. 1997; 124: 88-94Abstract Full Text PDF PubMed Scopus (58) Google Scholar, 23Kim C.Y. Lee J.H. Lee S.J. et al.Visual field defect caused by nerve fiber layer damage associated with an internal limiting lamina defect after uneventful epiretinal membrane surgery.Am J Ophthalmol. 2002; 133: 569-571Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 24Taban M. Lewis H. Lee M.S. Nonarteritic anterior ischemic optic neuropathy and ‘visual field defects’ following vitrectomy: could they be related?.Graefes Arch Clin Exp Ophthalmol. 2007; 245: 600-605Crossref PubMed Scopus (24) Google Scholar, 39Foos R.Y. Vitreoretinal juncture; topographical variations.Invest Ophthalmol Vis Sci. 1972; 11: 801-808Google Scholar, 65Kraupa E. Zur Frage der “hinteren ringförmigen Glaskörperabhebung”.Ztschr f Augenheilkd. 1936; 88: 224-229Google Scholar, 66Cibis G.W. Watzke R.C. Chua J. Retinal hemorrhages in posterior vitreous detachment.Am J Ophthalmol. 1975; 80: 1043-1046Abstract Full Text PDF PubMed Scopus (39) Google Scholar, 67Watanabe C. Shiraki J. Yoshinaga K. Unilateral disc hemorrhage in young people.Ophthalmology (Jpn). 1981; 23 ([in Japanese]): 241-246Google Scholar, 68Katz B. Hoyt W.F. Intrapapillary and peripapillary hemorrhage in young patients with incomplete posterior vitreous detachment. Signs of vitreopapillary traction.Ophthalmology. 1995; 102: 349-354Abstract Full Text PDF PubMed Scopus (99) Google Scholar This may occur through direct vitreovascular attachments or connections to disc and retinal tissues secondarily tearing capillaries. Such bleeding may be viewed as an epiphenomenon of vitreous detachment unassociated with loss of visual function,65Kraupa E. Zur Frage der “hinteren ringförmigen Glaskörperabhebung”.Ztschr f Augenheilkd. 1936; 88: 224-229Google Scholar, 66Cibis G.W. Watzke R.C. Chua J. Retinal hemorrhages in posterior vitreous detachment.Am J Ophthalmol. 1975; 80: 1043-1046Abstract Full Text PDF PubMed Scopus (39) Google Scholar, 67Watanabe C. Shiraki J. Yoshinaga K. Unilateral disc hemorrhage in young people.Ophthalmology (Jpn). 1981; 23 ([in Japanese]): 241-246Google Scholar, 68Katz B. Hoyt W.F. Intrapapillary and peripapillary hemorrhage in young patients with incomplete posterior vitreous detachment. Signs of vitreopapillary traction.Ophthalmology. 1995; 102: 349-354Abstract Full Text PDF PubMed Scopus (99) Google Scholar rather than the cause of axonal injury. During surgical vitreous stripping maneuvers, injury to the disc, should it occur, is predominantly on the nasal aspect where epipapillary membranes are thickest and most firmly attached,36Roth A.M. Foos R.Y. Surface structure of the optic nerve head. 1. Epipapillary membranes.Am J Ophthalmol. 1972; 74: 977-985Abstract Full Text PDF PubMed Scopus (46) Google Scholar, 37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar, 38Foos R.Y. Posterior vitreous detachment.Trans Am Acad Ophthalmol Otolaryngol. 1972; 76: 480-497PubMed Google Scholar often causing temporal and altitudinal visual field defects that do not follow a pattern of retinal vascular occlusions.21Kerrison J.B. Haller J.A. Elman M. Miller N.R. Visual field loss following vitreous surgery.Arch Ophthalmol. 1996; 114: 564-569Crossref PubMed Scopus (87) Google Scholar, 22Paques M. Massin P. Santiago P.Y. et al.Visual field loss after vitrectomy for full-thickness macular holes.Am J Ophthalmol. 1997; 124: 88-94Abstract Full Text PDF PubMed Scopus (58) Google Scholar, 24Taban M. Lewis H. Lee M.S. Nonarteritic anterior ischemic optic neuropathy and ‘visual field defects’ following vitrectomy: could they be related?.Graefes Arch Clin Exp Ophthalmol. 2007; 245: 600-605Crossref PubMed Scopus (24) Google Scholar, 67Watanabe C. Shiraki J. Yoshinaga K. Unilateral disc hemorrhage in young people.Ophthalmology (Jpn). 1981; 23 ([in Japanese]): 241-246Google Scholar, 69Williams Sr., J.M. Jacobson D.M. Visual field loss after vitreous surgery.Arch Ophthalmol. 1997; 115: 434-435Crossref PubMed Scopus (9) Google Scholar, 70Cullinane A.B. Cleary P.E. Prevention of visual field defects after macular hole surgery.Br J Ophthalmol. 2000; 84: 372-377Crossref PubMed Scopus (30) Google Scholar, 71Boldt H.C. Munden P.M. Folk J.C. Mehaffey M.G. Visual field defects after macular hole surgery.Am J Ophthalmol. 1996; 122: 371-381Abstract Full Text PDF PubMed Scopus (96) Google Scholar Spontaneous posterior vitreous detachments, on the other hand, are most likely to course through the top of the disc and from its temporal aspect, and progress downward.26Jaffe N.S. Complications of acute posterior vitreous detachment.Arch Ophthalmol. 1968; 79: 568-571Crossref PubMed Scopus (91) Google Scholar, 41Brasseur G. Décollement postérieur du vitré.in: Brasseur G. Pathologie du vitré. Masson, Société Française d’Ophtalmologie, Paris, France2003: 79-115Google Scholar, 50Pischel D.K. Detachment of the vitreous as seen with slit-lamp examination.Am J Ophthalmol. 1953; 36: 1497-1507PubMed Google Scholar, 65Kraupa E. Zur Frage der “hinteren ringförmigen Glaskörperabhebung”.Ztschr f Augenheilkd. 1936; 88: 224-229Google Scholar, 68Katz B. Hoyt W.F. Intrapapillary and peripapillary hemorrhage in young patients with incomplete posterior vitreous detachment. Signs of vitreopapillary traction.Ophthalmology. 1995; 102: 349-354Abstract Full Text PDF PubMed Scopus (99) Google Scholar They may occur over minutes to hours often during rotational eye movements25Jaffe N.S. Vitreous traction at the posterior pole of the fundus due to alterations in the vitreous posterior.Trans Am Acad Ophthalmol Otolaryngol. 1967; 71: 642-652PubMed Google Scholar, 26Jaffe N.S. Complications of acute posterior vitreous detachment.Arch Ophthalmol. 1968; 79: 568-571Crossref PubMed Scopus (91) Google Scholar, 41Brasseur G. Décollement postérieur du vitré.in: Brasseur G. Pathologie du vitré. Masson, Société Française d’Ophtalmologie, Paris, France2003: 79-115Google Scholar while awake or during rapid eye movements while asleep. Such vitreous dissection may momentarily be arrested where epipapillary membrane attachments are strongest, at the nasoinferior aspect of the disc, the site of fetal fissure closure where central disc vessels often bifurcate and Cloquet's canal may sometimes encompass a Bergmeister's papilla.36Roth A.M. Foos R.Y. Surface structure of the optic nerve head. 1. Epipapillary membranes.Am J Ophthalmol. 1972; 74: 977-985Abstract Full Text PDF PubMed Scopus (46) Google Scholar, 37Foos R.Y. Roth A.M. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment.Am J Ophthalmol. 1973; 76: 662-671Abstract Full Text PDF PubMed Scopus (45) Google Scholar, 38Foos R.Y. Posterior vitreous detachment.Trans Am Acad Ophthalmol Otolaryngol. 1972; 76: 480-497PubMed Google Scholar, 64Busacca A. Biomicroscopie de la papille.in: Biomicroscopie et Histopathologie de l’Œil. Vol. III: Corps Vitré-Biomicroscopie du Fond de l’Œil. Schweizer Druck- und Verlagshaus, Zurich, Switzerland1967: 346-347Google Scholar, 72Kagemann L. Wollstein G. Ishikawa H. et al.Persistence of Cloquet's canal in normal healthy eyes.Am J Ophthalmol. 2006; 142: 862-864Abstract Full Text Full Text PDF PubMed Scopus (9) Google Scholar Such mechanical dynamic stretch of axons during vitreous separation is more likely to cause injury73Smith D.H. Wolf J.A. Lusardi T.A. et al.High tolerance and delayed elastic response of cultured axons to dynamic stretch injury.J Neurosci. 1999; 19: 4263-4269PubMed Google Scholar, 74Tang-Schomer M.D. Patel A.R. Baas P.W. Smith D.H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration.FASEB J. 2010; 24: 1401-1410Crossref PubMed Scopus (260) Google Scholar when the movement is brisker,75Ahmadzadeh H. Smith D.H. Shenoy V.B. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model.Biophys J. 2014; 106: 1123-1133Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar usually over the superior or temporal half of the disc or peripapillary area, than when it is slowed thereafter, giving rise to sectoral disc differences. Such damage to unmyelinated axons also is more likely to occur with advancing age when other, potentially decelerating, vitreoretinal attachments in the posterior pole about the optic disc weaken38Foos R.Y. Posterior vitreous detachment.Trans Am Acad Ophthalmol Otolaryngol. 1972; 76: 480-497PubMed Google Scholar, 46Rao N.A. Spencer W.H. Optic Nerve.in: 4th ed. Ophthalmic Pathology: An Atlas and Textbook. Vol. 1. Saunders, Philadelphia, PA1996: 513-622Google Scholar, 55Balazs E.A. Functional anatomy of the vitreus.in: Biomedical Foundations of Ophthalmology. Vol. 1. Harper & Row, Philadelphia, PA1984: 1-16Google Scholar, 68Katz B. Hoyt W.F. Intrapapillary and peripapillary hemorrhage in young patients with incomplete posterior vitreous detachment. Signs of vitreopapillary traction.Ophthalmology. 1995; 102: 349-354Abstract Full Text PDF PubMed Scopus (99) Google Scholar, 76Sebag J. Age-related differences in the human vitreoretinal interface.Arch Ophthalmol. 1991; 109: 966-971Crossref PubMed Scopus (192) Google Scholar and axonal tolerance to rapid stretch injury also diminishes.77Lamoureux P.L. O'Toole M.R. Heidemann S.R. Miller K.E. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging.BMC Neurosci. 2010; 11: 140Crossref PubMed Scopus (24) Google Scholar Once separation is arrested, glial and axoplasmic “leakage” from disrupted neural tissue and blood released from torn capillaries with the ensuing inflammatory response results in structural and atrophic changes that may weaken the remaining attachments. Although a stepwise progression of vitreous detachment38Foos R.Y. Posterior vitreous detachment.Trans Am Acad Ophthalmol Otolaryngol. 1972; 76: 480-497PubMed Google Scholar, 41Brasseur G. Décollement postérieur du vitré.in: Brasseur G. Pathologie du vitré. Masson, Société Française d’Ophtalmologie, Paris, France2003: 79-115Google Scholar, 53Uchino E. Uemura A. Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography.Arch Ophthalmol. 2001; 119: 1475-1479Crossref PubMed Scopus (235) Google Scholar, 64Busacca A. Biomicroscopie de la papille.in: Biomicroscopie et Histopathologie de l’Œil. Vol. III: Corps Vitré-Biomicroscopie du Fond de l’Œil. Schweizer Druck- und Verlagshaus, Zurich, Switzerland1967: 346-347Google Scholar and loss of visual function with “progressive NAION”78Borchert M. Lessell S. Progressive and recurrent nonarteritic anterior ischemic optic neuropathy.Am J Ophthalmol. 1988; 106: 443-449Abstract Full Text PDF PubMed Scopus (56) Google Scholar is still possible, the most likely outcome is slowed and uneventful progression of vitreous detachment or, alternatively, indefinite partial attachment where epipapillary membranes remain adherent to the optic disc. Areas with vitreous tension may be disclosed via the irregular dilatation of fine surface vessels correlating to areas of visual field sparing,79Friedland S. Winterkorn J.M. Burde R.M. Luxury perfusion following anterior ischemic optic neuropathy.J Neuroophthalmol. 1996; 16: 163-171Crossref PubMed Scopus (18) Google Scholar adjacent to sections damaged through vitreous separation. Release of residual vitreous attachments with unkinking of axons can explain slight visual recovery,48Kroll P. Wiegand W. Schmidt J. Vitreopapillary traction in proliferative diabetic vitreoretinopathy.Br J Ophthalmol. 1999; 83: 261-264Crossref PubMed Scopus (58) Google Scholar, 80Modarres M. Sanjari M.S. Falavarjani K.G. Vitrectomy and release of presumed epipapillary vitreous traction for treatment of nonarteritic anterior ischemic optic neuropathy associated with partial posterior vitreous detachment.Ophthalmology. 2007; 114: 340-344Abstract Full Text Full Text PDF PubMed Scopus (32) Google Scholar as well as resolution of surface telangiectasias. We welcome efforts using optical coherence tomography81Sanjari M.S. Falavarjani K.G. Parvaresh M.M. et al.Vitreopapillary traction in nonarteritic anterior ischemic optic neuropathy.Iranian J Ophthalmic Res. 2006; 1: 110-112Google Scholar, 82Lee M.S. Foroozan R. Kosmorsky G.S. Posterior vitreous detachment in AION.Ophthalmology. 2009; 116: 597Abstract Full Text Full Text PDF PubMed Scopus (9) Google Scholar and other modalities such as dynamic B-scan ultrasonography to further clarify the role of vitreous separation in mechanical dynamic stretch injury to a “disc at risk.” We have discussed why “NAION” may be a pervasive and tenacious misnomer. It needs to be renamed as a papillary vitreous detachment neuropathy, such as PVD-N, and would be more properly understood as an extreme outcome within the spectrum of vitreopapillary separation disorders. In those at risk,49Almog Y. Goldstein M. Visual outcome in eyes with asymptomatic optic disc edema.J Neuroophthalmol. 2003; 23: 204-207Crossref PubMed Scopus (33) Google Scholar, 83Hayreh S.S. Zimmerman M.B. Incipient nonarteritic anterior ischemic optic neuropathy.Ophthalmology. 2007; 114: 1763-1772Abstract Full Text Full Text PDF PubMed Scopus (69) Google Scholar the timely and controlled release of vitreous connections to the optic disc may preempt such jarring finale. Re: Parsa et al.: Nonarteritic anterior ischemic optic neuropathy (NAION): a misnomer. Rearranging pieces of a puzzle to reveal a nonischemic papillopathy caused by vitreous separation (Ophthalmology 2015;122:439-42)OphthalmologyVol. 122Issue 12PreviewParsa and Hoyt1 in their editorial state that nonarteritic anterior ischemic optic neuropathy (NAION) is not ischemic in nature, but is primarily owing to vitreous traction of the optic disc. They go on to state, “What is the evidence for ischemia in this entity?” Full-Text PDF Re: Parsa et al.: Nonarteritic anterior ischemic optic neuropathy (NAION): a misnomer. Rearranging pieces of a puzzle to reveal a nonischemic papillopathy caused by vitreous separation (Ophthalmology 2015;122:439-42)OphthalmologyVol. 122Issue 12PreviewI have read with some dismay the editorial in the March 2015 issue of Ophthalmology.1 If the authors are correct in claiming that nonarteritic anterior ischemic optic neuropathy (NA-AION) is not an ischemic process, they must at least answer the following 2 questions: First, why is the optic nerve head hyperemic and edematous at outset (it does not become pale for 3-6 weeks), and why can the condition occur in a disc of normal dimensions or in a myopic disc (as in the case in 10% to 15% of NA-AION patients) and not exclusively in a so-called disc at risk? Full-Text PDF Re: Parsa et al.: Nonarteritic anterior ischemic optic neuropathy (NAION): a misnomer. Rearranging pieces of a puzzle to reveal a nonischemic papillopathy caused by vitreous separation (Ophthalmology 2015;122:439-42)OphthalmologyVol. 122Issue 12PreviewWe read with relish the editorial of Parsa and Hoyt arguing for a change in prism through which we see what we had heretofore called nonarteritic anterior ischemic optic neuropathy (NAION).1 Their elegant and cogent summary of consequences and associations of vitreopapillary traction, when collated as they have done, convincingly argue their point. As the English horn is neither English nor a horn, so too, NAION is not ischemic, at least, not primarily so. Full-Text PDF" @default.
- W2018278506 created "2016-06-24" @default.
- W2018278506 creator A5004138147 @default.
- W2018278506 creator A5005096356 @default.
- W2018278506 date "2015-03-01" @default.
- W2018278506 modified "2023-10-03" @default.
- W2018278506 title "Nonarteritic Anterior Ischemic Optic Neuropathy (NAION): A Misnomer. Rearranging Pieces of a Puzzle to Reveal a Nonischemic Papillopathy Caused by Vitreous Separation" @default.
- W2018278506 cites W1500591052 @default.
- W2018278506 cites W1934091276 @default.
- W2018278506 cites W1973566095 @default.
- W2018278506 cites W1976175245 @default.
- W2018278506 cites W1985585758 @default.
- W2018278506 cites W1990463128 @default.
- W2018278506 cites W1992392552 @default.
- W2018278506 cites W1998355635 @default.
- W2018278506 cites W1999354155 @default.
- W2018278506 cites W2001622237 @default.
- W2018278506 cites W2010824449 @default.
- W2018278506 cites W2015360877 @default.
- W2018278506 cites W2023069104 @default.
- W2018278506 cites W2023279416 @default.
- W2018278506 cites W2025379019 @default.
- W2018278506 cites W2028032098 @default.
- W2018278506 cites W2032082511 @default.
- W2018278506 cites W2033165304 @default.
- W2018278506 cites W2033230718 @default.
- W2018278506 cites W2035126030 @default.
- W2018278506 cites W2035303849 @default.
- W2018278506 cites W2040772514 @default.
- W2018278506 cites W2040822791 @default.
- W2018278506 cites W2041550003 @default.
- W2018278506 cites W2046014483 @default.
- W2018278506 cites W2047377734 @default.
- W2018278506 cites W2048249712 @default.
- W2018278506 cites W2049072266 @default.
- W2018278506 cites W2051172305 @default.
- W2018278506 cites W2052218395 @default.
- W2018278506 cites W2053132680 @default.
- W2018278506 cites W2053172104 @default.
- W2018278506 cites W2054084798 @default.
- W2018278506 cites W2062199027 @default.
- W2018278506 cites W2063042783 @default.
- W2018278506 cites W2065410103 @default.
- W2018278506 cites W2066511098 @default.
- W2018278506 cites W2072457325 @default.
- W2018278506 cites W2074159392 @default.
- W2018278506 cites W2080906962 @default.
- W2018278506 cites W2084563372 @default.
- W2018278506 cites W2086244321 @default.
- W2018278506 cites W2089053193 @default.
- W2018278506 cites W2090034963 @default.
- W2018278506 cites W2092323798 @default.
- W2018278506 cites W2093274294 @default.
- W2018278506 cites W2094004155 @default.
- W2018278506 cites W2094604478 @default.
- W2018278506 cites W2094902600 @default.
- W2018278506 cites W2107218267 @default.
- W2018278506 cites W2110668326 @default.
- W2018278506 cites W2127294620 @default.
- W2018278506 cites W2139113472 @default.
- W2018278506 cites W2142628309 @default.
- W2018278506 cites W2144285292 @default.
- W2018278506 cites W2147167221 @default.
- W2018278506 cites W2147516066 @default.
- W2018278506 cites W2147860052 @default.
- W2018278506 cites W2151165815 @default.
- W2018278506 cites W2151816898 @default.
- W2018278506 cites W2165860108 @default.
- W2018278506 cites W2315168699 @default.
- W2018278506 cites W2769227083 @default.
- W2018278506 cites W4243919129 @default.
- W2018278506 cites W55809455 @default.
- W2018278506 cites W60548852 @default.
- W2018278506 cites W2047769261 @default.
- W2018278506 cites W2076461090 @default.
- W2018278506 doi "https://doi.org/10.1016/j.ophtha.2014.11.011" @default.
- W2018278506 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25703466" @default.
- W2018278506 hasPublicationYear "2015" @default.
- W2018278506 type Work @default.
- W2018278506 sameAs 2018278506 @default.
- W2018278506 citedByCount "34" @default.
- W2018278506 countsByYear W20182785062015 @default.
- W2018278506 countsByYear W20182785062016 @default.
- W2018278506 countsByYear W20182785062017 @default.
- W2018278506 countsByYear W20182785062018 @default.
- W2018278506 countsByYear W20182785062019 @default.
- W2018278506 countsByYear W20182785062020 @default.
- W2018278506 countsByYear W20182785062021 @default.
- W2018278506 countsByYear W20182785062022 @default.
- W2018278506 countsByYear W20182785062023 @default.
- W2018278506 crossrefType "journal-article" @default.
- W2018278506 hasAuthorship W2018278506A5004138147 @default.
- W2018278506 hasAuthorship W2018278506A5005096356 @default.
- W2018278506 hasBestOaLocation W20182785061 @default.
- W2018278506 hasConcept C118487528 @default.
- W2018278506 hasConcept C122675076 @default.
- W2018278506 hasConcept C138885662 @default.
- W2018278506 hasConcept C27206212 @default.