Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018282205> ?p ?o ?g. }
- W2018282205 endingPage "1181" @default.
- W2018282205 startingPage "1157" @default.
- W2018282205 abstract "All of the numerous band spectra formerly attributed to carbon are due probably to carbon compounds. A majority of those analyzed are now definitely known to be due to carbon monoxide, as a result of the intercorrelation of the various systems and the correlation of one of these systems, the fourth positive group of carbon, with the known absorption spectrum of CO.The known band spectra of neutral carbon monoxide comprise the fourth positive group of carbon, the AA{}ngstrom CO bands, the Cameron bands, and the third positive group of carbon,---this latter group having been shown by Duffendack and Fox to comprise in reality two different systems. The relation of these various systems is indicated in Fig. 1 and Table I. The band systems of ionized carbon monoxide,---i.e., the comet-tail bands, the first negative group of carbon, and the Baldet-Johnson combination bands,---are also shown in this figure.The fourth positive group of carbon, as analyzed by the writer, comprises the former group of that name, and also Lyman's fifth positive group, and practically all the remaining unassigned bands found by Lyman in the ultra-violet spectrum of carbon monoxide. Full details of this analysis are given, and the results are tabulated in Table II and in Fig. 2. The bands found by Leifson in the absorption spectrum of cold carbon monoxide form a selected portion of this system, proving that it is the resonance system of CO. The system is also quantitatively related to the known infra-red absorption bands of CO in the manner demanded by the quantum theory. The general intensity distribution is in agreement with Franck's mechanical theory, as extended by Condon. The vibrational data obtained from this system have been used by Birge and Sponer to calculate the heat of dissociation of CO.The AA{}ngstrom CO bands have as a final state the initial state of the fourth group, and this relation permits a definite assignment of vibrational quantum numbers for the AA{}ngstrom bands. Recent work by Jass'e on the fine structure of these bands is in agreement with this assignment. All of the measurements on the heads of the AA{}ngstrom bands are collected in Table III and are compared with the calculated values. A puzzling discrepancy in one of the vibrational energy intervals is noted and discussed.The Cameron bands and the third positive group of carbon have been found by Johnson to have the same relation as the above two systems, and the Cameron bands form a second resonance system for CO. They have recently been found in absorption, by Hopfield. The common electronic level of these two systems is probably triple, although the bands of each system have either five-fold or six-fold heads. The various relations are discussed in detail, and equations are given in all cases.Recent work indicates that the electronic energy levels of molecules are similar to those found in atoms, and an assumed octet structure for CO suggests its correlation with Mg. The actual details of this correlation are given, but no attempt is made to discuss critically the underlying theory. The levels for CO are shown to be either single or triple, and the only two levels belonging to the same term sequence are found to fit a Rydberg formula with the known correct limit." @default.
- W2018282205 created "2016-06-24" @default.
- W2018282205 creator A5009828238 @default.
- W2018282205 date "1926-12-01" @default.
- W2018282205 modified "2023-09-25" @default.
- W2018282205 title "The Band Spectra of Carbon Monoxide" @default.
- W2018282205 cites W1973777491 @default.
- W2018282205 cites W1978700791 @default.
- W2018282205 cites W1979162189 @default.
- W2018282205 cites W1986603823 @default.
- W2018282205 cites W1988278491 @default.
- W2018282205 cites W1990281795 @default.
- W2018282205 cites W1991016793 @default.
- W2018282205 cites W1995899576 @default.
- W2018282205 cites W1997085344 @default.
- W2018282205 cites W2001866955 @default.
- W2018282205 cites W2014165715 @default.
- W2018282205 cites W2015048754 @default.
- W2018282205 cites W2016690356 @default.
- W2018282205 cites W2021695339 @default.
- W2018282205 cites W2028107598 @default.
- W2018282205 cites W2030949930 @default.
- W2018282205 cites W2031045341 @default.
- W2018282205 cites W2034785410 @default.
- W2018282205 cites W2038932442 @default.
- W2018282205 cites W2038960165 @default.
- W2018282205 cites W2044383017 @default.
- W2018282205 cites W2045988565 @default.
- W2018282205 cites W2052436128 @default.
- W2018282205 cites W2054308314 @default.
- W2018282205 cites W2054880327 @default.
- W2018282205 cites W2058143700 @default.
- W2018282205 cites W2061825702 @default.
- W2018282205 cites W2064113241 @default.
- W2018282205 cites W2070798223 @default.
- W2018282205 cites W2081523956 @default.
- W2018282205 cites W2082548347 @default.
- W2018282205 cites W2128534964 @default.
- W2018282205 cites W2242694920 @default.
- W2018282205 cites W2307962017 @default.
- W2018282205 cites W2337530381 @default.
- W2018282205 cites W2800972026 @default.
- W2018282205 cites W2985424420 @default.
- W2018282205 cites W3022900486 @default.
- W2018282205 cites W4299088690 @default.
- W2018282205 doi "https://doi.org/10.1103/physrev.28.1157" @default.
- W2018282205 hasPublicationYear "1926" @default.
- W2018282205 type Work @default.
- W2018282205 sameAs 2018282205 @default.
- W2018282205 citedByCount "44" @default.
- W2018282205 countsByYear W20182822052013 @default.
- W2018282205 countsByYear W20182822052015 @default.
- W2018282205 countsByYear W20182822052016 @default.
- W2018282205 countsByYear W20182822052017 @default.
- W2018282205 countsByYear W20182822052021 @default.
- W2018282205 countsByYear W20182822052022 @default.
- W2018282205 countsByYear W20182822052023 @default.
- W2018282205 crossrefType "journal-article" @default.
- W2018282205 hasAuthorship W2018282205A5009828238 @default.
- W2018282205 hasConcept C104779481 @default.
- W2018282205 hasConcept C119824511 @default.
- W2018282205 hasConcept C120665830 @default.
- W2018282205 hasConcept C121332964 @default.
- W2018282205 hasConcept C125287762 @default.
- W2018282205 hasConcept C1276947 @default.
- W2018282205 hasConcept C140205800 @default.
- W2018282205 hasConcept C159985019 @default.
- W2018282205 hasConcept C161790260 @default.
- W2018282205 hasConcept C177801218 @default.
- W2018282205 hasConcept C178790620 @default.
- W2018282205 hasConcept C184779094 @default.
- W2018282205 hasConcept C185592680 @default.
- W2018282205 hasConcept C191274033 @default.
- W2018282205 hasConcept C192562407 @default.
- W2018282205 hasConcept C207170983 @default.
- W2018282205 hasConcept C4839761 @default.
- W2018282205 hasConcept C512735826 @default.
- W2018282205 hasConceptScore W2018282205C104779481 @default.
- W2018282205 hasConceptScore W2018282205C119824511 @default.
- W2018282205 hasConceptScore W2018282205C120665830 @default.
- W2018282205 hasConceptScore W2018282205C121332964 @default.
- W2018282205 hasConceptScore W2018282205C125287762 @default.
- W2018282205 hasConceptScore W2018282205C1276947 @default.
- W2018282205 hasConceptScore W2018282205C140205800 @default.
- W2018282205 hasConceptScore W2018282205C159985019 @default.
- W2018282205 hasConceptScore W2018282205C161790260 @default.
- W2018282205 hasConceptScore W2018282205C177801218 @default.
- W2018282205 hasConceptScore W2018282205C178790620 @default.
- W2018282205 hasConceptScore W2018282205C184779094 @default.
- W2018282205 hasConceptScore W2018282205C185592680 @default.
- W2018282205 hasConceptScore W2018282205C191274033 @default.
- W2018282205 hasConceptScore W2018282205C192562407 @default.
- W2018282205 hasConceptScore W2018282205C207170983 @default.
- W2018282205 hasConceptScore W2018282205C4839761 @default.
- W2018282205 hasConceptScore W2018282205C512735826 @default.
- W2018282205 hasIssue "6" @default.
- W2018282205 hasLocation W20182822051 @default.
- W2018282205 hasOpenAccess W2018282205 @default.