Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018295310> ?p ?o ?g. }
- W2018295310 endingPage "334" @default.
- W2018295310 startingPage "301" @default.
- W2018295310 abstract "We investigate techniques for analysis and retrieval of object trajectories. We assume that a trajectory is a sequence of two or three dimensional points. Trajectory datasets are very common in environmental applications, mobility experiments, video surveillance and are especially important for the discovery of certain biological patterns. Such kind of data usually contain a great amount of noise, that makes all previously used metrics fail. Therefore, here we formalize non-metric similarity functions based on the Longest Common Subsequence (LCSS), which are very robust to noise and furthermore provide an intuitive notion of similarity between trajectories by giving more weight to the similar portions of the sequences. Stretching of sequences in time is allowed, as well as global translating of the sequences in space. Efficient approximate algorithms that compute these similarity measures are also provided. We compare these new methods to the widely used Euclidean and Dynamic Time Warping distance functions (for real and synthetic data) and show the superiority of our approach, especially under the strong presence of noise. We prove a weaker version of the triangle inequality and employ it in an indexing structure to answer nearest neighbor queries. Finally, we present experimental results that validate the accuracy and efficiency of our approach." @default.
- W2018295310 created "2016-06-24" @default.
- W2018295310 creator A5061270013 @default.
- W2018295310 creator A5063685438 @default.
- W2018295310 creator A5091785745 @default.
- W2018295310 date "2005-02-01" @default.
- W2018295310 modified "2023-09-24" @default.
- W2018295310 title "Elastic Translation Invariant Matching of Trajectories" @default.
- W2018295310 cites W131856359 @default.
- W2018295310 cites W1499049447 @default.
- W2018295310 cites W1514224985 @default.
- W2018295310 cites W1672197616 @default.
- W2018295310 cites W1966554111 @default.
- W2018295310 cites W1979104110 @default.
- W2018295310 cites W1992764659 @default.
- W2018295310 cites W2002328435 @default.
- W2018295310 cites W2014122208 @default.
- W2018295310 cites W2034528422 @default.
- W2018295310 cites W2040816013 @default.
- W2018295310 cites W2047216628 @default.
- W2018295310 cites W2062687261 @default.
- W2018295310 cites W2066834853 @default.
- W2018295310 cites W2068039256 @default.
- W2018295310 cites W2076249942 @default.
- W2018295310 cites W2086086639 @default.
- W2018295310 cites W2098272719 @default.
- W2018295310 cites W2104731482 @default.
- W2018295310 cites W2108752797 @default.
- W2018295310 cites W2127513746 @default.
- W2018295310 cites W2128061541 @default.
- W2018295310 cites W2131687179 @default.
- W2018295310 cites W2132585078 @default.
- W2018295310 cites W2147880780 @default.
- W2018295310 cites W2149921886 @default.
- W2018295310 cites W2150856527 @default.
- W2018295310 cites W2151465245 @default.
- W2018295310 cites W2163336863 @default.
- W2018295310 cites W2165533158 @default.
- W2018295310 cites W2167081989 @default.
- W2018295310 cites W2167833054 @default.
- W2018295310 cites W58346954 @default.
- W2018295310 doi "https://doi.org/10.1007/s10994-005-5830-9" @default.
- W2018295310 hasPublicationYear "2005" @default.
- W2018295310 type Work @default.
- W2018295310 sameAs 2018295310 @default.
- W2018295310 citedByCount "64" @default.
- W2018295310 countsByYear W20182953102012 @default.
- W2018295310 countsByYear W20182953102013 @default.
- W2018295310 countsByYear W20182953102014 @default.
- W2018295310 countsByYear W20182953102015 @default.
- W2018295310 countsByYear W20182953102016 @default.
- W2018295310 countsByYear W20182953102017 @default.
- W2018295310 countsByYear W20182953102018 @default.
- W2018295310 countsByYear W20182953102019 @default.
- W2018295310 countsByYear W20182953102021 @default.
- W2018295310 countsByYear W20182953102022 @default.
- W2018295310 crossrefType "journal-article" @default.
- W2018295310 hasAuthorship W2018295310A5061270013 @default.
- W2018295310 hasAuthorship W2018295310A5063685438 @default.
- W2018295310 hasAuthorship W2018295310A5091785745 @default.
- W2018295310 hasBestOaLocation W20182953101 @default.
- W2018295310 hasConcept C103278499 @default.
- W2018295310 hasConcept C104317684 @default.
- W2018295310 hasConcept C105795698 @default.
- W2018295310 hasConcept C11413529 @default.
- W2018295310 hasConcept C115961682 @default.
- W2018295310 hasConcept C116738811 @default.
- W2018295310 hasConcept C118615104 @default.
- W2018295310 hasConcept C120098539 @default.
- W2018295310 hasConcept C121332964 @default.
- W2018295310 hasConcept C1276947 @default.
- W2018295310 hasConcept C134306372 @default.
- W2018295310 hasConcept C13662910 @default.
- W2018295310 hasConcept C137877099 @default.
- W2018295310 hasConcept C153180895 @default.
- W2018295310 hasConcept C154945302 @default.
- W2018295310 hasConcept C165064840 @default.
- W2018295310 hasConcept C167625842 @default.
- W2018295310 hasConcept C182964748 @default.
- W2018295310 hasConcept C185592680 @default.
- W2018295310 hasConcept C186450821 @default.
- W2018295310 hasConcept C190470478 @default.
- W2018295310 hasConcept C198043062 @default.
- W2018295310 hasConcept C202444582 @default.
- W2018295310 hasConcept C33923547 @default.
- W2018295310 hasConcept C34388435 @default.
- W2018295310 hasConcept C37914503 @default.
- W2018295310 hasConcept C41008148 @default.
- W2018295310 hasConcept C45484198 @default.
- W2018295310 hasConcept C55493867 @default.
- W2018295310 hasConcept C72802188 @default.
- W2018295310 hasConcept C75165309 @default.
- W2018295310 hasConcept C88516994 @default.
- W2018295310 hasConcept C99498987 @default.
- W2018295310 hasConceptScore W2018295310C103278499 @default.
- W2018295310 hasConceptScore W2018295310C104317684 @default.
- W2018295310 hasConceptScore W2018295310C105795698 @default.
- W2018295310 hasConceptScore W2018295310C11413529 @default.