Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018296043> ?p ?o ?g. }
- W2018296043 endingPage "1589" @default.
- W2018296043 startingPage "1577" @default.
- W2018296043 abstract "Hidden Markov models have been found very useful for a wide range of applications in machine learning and pattern recognition. The wavelet transform has emerged as a new tool for signal and image analysis. Learning models for wavelet coefficients have been mainly based on fixed-length sequences, but real applications often require to model variable-length, very long or real-time sequences. In this paper, we propose a new learning architecture for sequences analyzed on short-term basis, but not assuming stationarity within each frame. Long-term dependencies will be modeled with a hidden Markov model which, in each internal state, will deal with the local dynamics in the wavelet domain, using a hidden Markov tree. The training algorithms for all the parameters in the composite model are developed using the expectation-maximization framework. This novel learning architecture could be useful for a wide range of applications. We detail two experiments with artificial and real data: model-based denoising and speech recognition. Denoising results indicate that the proposed model and learning algorithm are more effective than previous approaches based on isolated hidden Markov trees. In the case of the 'Doppler' benchmark sequence, with 1024 samples and additive white noise, the new method reduced the mean squared error from 1.0 to 0.0842. The proposed methods for feature extraction, modeling and learning, increased the phoneme recognition rates in 28.13%, with better convergence than models based on Gaussian mixtures." @default.
- W2018296043 created "2016-06-24" @default.
- W2018296043 creator A5030230762 @default.
- W2018296043 creator A5074129350 @default.
- W2018296043 creator A5077266711 @default.
- W2018296043 date "2010-04-01" @default.
- W2018296043 modified "2023-10-16" @default.
- W2018296043 title "Denoising and recognition using hidden Markov models with observation distributions modeled by hidden Markov trees" @default.
- W2018296043 cites W1579559187 @default.
- W2018296043 cites W1636244751 @default.
- W2018296043 cites W1980800561 @default.
- W2018296043 cites W1981774071 @default.
- W2018296043 cites W1982398062 @default.
- W2018296043 cites W2007103423 @default.
- W2018296043 cites W2014089984 @default.
- W2018296043 cites W2015087354 @default.
- W2018296043 cites W2018332268 @default.
- W2018296043 cites W2035831621 @default.
- W2018296043 cites W2039021639 @default.
- W2018296043 cites W2045956438 @default.
- W2018296043 cites W2047280020 @default.
- W2018296043 cites W2052018164 @default.
- W2018296043 cites W2063666720 @default.
- W2018296043 cites W2086699924 @default.
- W2018296043 cites W2089894294 @default.
- W2018296043 cites W2105490013 @default.
- W2018296043 cites W2112533000 @default.
- W2018296043 cites W2115802275 @default.
- W2018296043 cites W2119957939 @default.
- W2018296043 cites W2123181652 @default.
- W2018296043 cites W2123922536 @default.
- W2018296043 cites W2129677069 @default.
- W2018296043 cites W2132984323 @default.
- W2018296043 cites W2133181993 @default.
- W2018296043 cites W2134929491 @default.
- W2018296043 cites W2137148039 @default.
- W2018296043 cites W2139549194 @default.
- W2018296043 cites W2141188596 @default.
- W2018296043 cites W2145534212 @default.
- W2018296043 cites W2168664005 @default.
- W2018296043 cites W2172235441 @default.
- W2018296043 cites W4255521522 @default.
- W2018296043 cites W2114096473 @default.
- W2018296043 doi "https://doi.org/10.1016/j.patcog.2009.11.010" @default.
- W2018296043 hasPublicationYear "2010" @default.
- W2018296043 type Work @default.
- W2018296043 sameAs 2018296043 @default.
- W2018296043 citedByCount "16" @default.
- W2018296043 countsByYear W20182960432012 @default.
- W2018296043 countsByYear W20182960432013 @default.
- W2018296043 countsByYear W20182960432014 @default.
- W2018296043 countsByYear W20182960432015 @default.
- W2018296043 countsByYear W20182960432016 @default.
- W2018296043 countsByYear W20182960432020 @default.
- W2018296043 crossrefType "journal-article" @default.
- W2018296043 hasAuthorship W2018296043A5030230762 @default.
- W2018296043 hasAuthorship W2018296043A5074129350 @default.
- W2018296043 hasAuthorship W2018296043A5077266711 @default.
- W2018296043 hasConcept C119857082 @default.
- W2018296043 hasConcept C153180895 @default.
- W2018296043 hasConcept C154945302 @default.
- W2018296043 hasConcept C163836022 @default.
- W2018296043 hasConcept C196956702 @default.
- W2018296043 hasConcept C23224414 @default.
- W2018296043 hasConcept C33923547 @default.
- W2018296043 hasConcept C41008148 @default.
- W2018296043 hasConcept C54907487 @default.
- W2018296043 hasConcept C64939953 @default.
- W2018296043 hasConcept C98763669 @default.
- W2018296043 hasConceptScore W2018296043C119857082 @default.
- W2018296043 hasConceptScore W2018296043C153180895 @default.
- W2018296043 hasConceptScore W2018296043C154945302 @default.
- W2018296043 hasConceptScore W2018296043C163836022 @default.
- W2018296043 hasConceptScore W2018296043C196956702 @default.
- W2018296043 hasConceptScore W2018296043C23224414 @default.
- W2018296043 hasConceptScore W2018296043C33923547 @default.
- W2018296043 hasConceptScore W2018296043C41008148 @default.
- W2018296043 hasConceptScore W2018296043C54907487 @default.
- W2018296043 hasConceptScore W2018296043C64939953 @default.
- W2018296043 hasConceptScore W2018296043C98763669 @default.
- W2018296043 hasIssue "4" @default.
- W2018296043 hasLocation W20182960431 @default.
- W2018296043 hasOpenAccess W2018296043 @default.
- W2018296043 hasPrimaryLocation W20182960431 @default.
- W2018296043 hasRelatedWork W1536753830 @default.
- W2018296043 hasRelatedWork W1980578514 @default.
- W2018296043 hasRelatedWork W2155943534 @default.
- W2018296043 hasRelatedWork W2161328464 @default.
- W2018296043 hasRelatedWork W2316449557 @default.
- W2018296043 hasRelatedWork W2382132287 @default.
- W2018296043 hasRelatedWork W3113307220 @default.
- W2018296043 hasRelatedWork W4302561434 @default.
- W2018296043 hasRelatedWork W4313547211 @default.
- W2018296043 hasRelatedWork W1542903750 @default.
- W2018296043 hasVolume "43" @default.
- W2018296043 isParatext "false" @default.
- W2018296043 isRetracted "false" @default.
- W2018296043 magId "2018296043" @default.