Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018317900> ?p ?o ?g. }
- W2018317900 endingPage "5358" @default.
- W2018317900 startingPage "5347" @default.
- W2018317900 abstract "The large apolar tunnel traversing the mini-hemoglobin from Cerebratulus lacteus (CerHb) has been examined by x-ray crystallography, ligand binding kinetics, and molecular dynamic simulations. The addition of 10 atm of xenon causes loss of diffraction in wild-type (wt) CerHbO2 crystals, but Leu-86(G12)Ala CerHbO2, which has an increased tunnel volume, stably accommodates two discrete xenon atoms: one adjacent to Leu-86(G12) and another near Ala-55(E18). Molecular dynamics simulations of ligand migration in wt CerHb show a low energy pathway through the apolar tunnel when Leu or Ala, but not Phe or Trp, is present at the 86(G12) position. The addition of 10–15 atm of xenon to solutions of wt CerHbCO and L86A CerHbCO causes 2–3-fold increases in the fraction of geminate ligand recombination, indicating that the bound xenon blocks CO escape. This idea was confirmed by L86F and L86W mutations, which cause even larger increases in the fraction of geminate CO rebinding, 2–5-fold decreases in the bimolecular rate constants for ligand entry, and large increases in the computed energy barriers for ligand movement through the apolar tunnel. Both the addition of xenon to the L86A mutant and oxidation of wt CerHb heme iron cause the appearance of an out Gln-44(E7) conformer, in which the amide side chain points out toward the solvent and appears to lower the barrier for ligand escape through the E7 gate. However, the observed kinetics suggest little entry and escape (≤25%) through the E7 pathway, presumably because the in Gln-44(E7) conformer is thermodynamically favored. The large apolar tunnel traversing the mini-hemoglobin from Cerebratulus lacteus (CerHb) has been examined by x-ray crystallography, ligand binding kinetics, and molecular dynamic simulations. The addition of 10 atm of xenon causes loss of diffraction in wild-type (wt) CerHbO2 crystals, but Leu-86(G12)Ala CerHbO2, which has an increased tunnel volume, stably accommodates two discrete xenon atoms: one adjacent to Leu-86(G12) and another near Ala-55(E18). Molecular dynamics simulations of ligand migration in wt CerHb show a low energy pathway through the apolar tunnel when Leu or Ala, but not Phe or Trp, is present at the 86(G12) position. The addition of 10–15 atm of xenon to solutions of wt CerHbCO and L86A CerHbCO causes 2–3-fold increases in the fraction of geminate ligand recombination, indicating that the bound xenon blocks CO escape. This idea was confirmed by L86F and L86W mutations, which cause even larger increases in the fraction of geminate CO rebinding, 2–5-fold decreases in the bimolecular rate constants for ligand entry, and large increases in the computed energy barriers for ligand movement through the apolar tunnel. Both the addition of xenon to the L86A mutant and oxidation of wt CerHb heme iron cause the appearance of an out Gln-44(E7) conformer, in which the amide side chain points out toward the solvent and appears to lower the barrier for ligand escape through the E7 gate. However, the observed kinetics suggest little entry and escape (≤25%) through the E7 pathway, presumably because the in Gln-44(E7) conformer is thermodynamically favored." @default.
- W2018317900 created "2016-06-24" @default.
- W2018317900 creator A5007314231 @default.
- W2018317900 creator A5024216292 @default.
- W2018317900 creator A5027457760 @default.
- W2018317900 creator A5044177677 @default.
- W2018317900 creator A5048580014 @default.
- W2018317900 creator A5049644732 @default.
- W2018317900 creator A5051229433 @default.
- W2018317900 creator A5072015473 @default.
- W2018317900 creator A5081113567 @default.
- W2018317900 creator A5081581635 @default.
- W2018317900 creator A5083216120 @default.
- W2018317900 creator A5086380237 @default.
- W2018317900 creator A5089022257 @default.
- W2018317900 date "2011-02-01" @default.
- W2018317900 modified "2023-10-18" @default.
- W2018317900 title "Ligand Migration in the Apolar Tunnel of Cerebratulus lacteus Mini-Hemoglobin" @default.
- W2018317900 cites W1483424465 @default.
- W2018317900 cites W1963892699 @default.
- W2018317900 cites W1969193253 @default.
- W2018317900 cites W1976161355 @default.
- W2018317900 cites W1986191025 @default.
- W2018317900 cites W1988347164 @default.
- W2018317900 cites W1991938411 @default.
- W2018317900 cites W1997993932 @default.
- W2018317900 cites W2009047341 @default.
- W2018317900 cites W2020017486 @default.
- W2018317900 cites W2022334774 @default.
- W2018317900 cites W2023182811 @default.
- W2018317900 cites W2029712656 @default.
- W2018317900 cites W2034226779 @default.
- W2018317900 cites W2034491979 @default.
- W2018317900 cites W2035799882 @default.
- W2018317900 cites W2037913479 @default.
- W2018317900 cites W2038840577 @default.
- W2018317900 cites W2040014920 @default.
- W2018317900 cites W2043057249 @default.
- W2018317900 cites W2047189088 @default.
- W2018317900 cites W2053879435 @default.
- W2018317900 cites W2057365710 @default.
- W2018317900 cites W2075333740 @default.
- W2018317900 cites W2077428907 @default.
- W2018317900 cites W2086687548 @default.
- W2018317900 cites W2091563009 @default.
- W2018317900 cites W2093381148 @default.
- W2018317900 cites W2097493124 @default.
- W2018317900 cites W2114520383 @default.
- W2018317900 cites W2115827786 @default.
- W2018317900 cites W2121257509 @default.
- W2018317900 cites W2122261036 @default.
- W2018317900 cites W2125252235 @default.
- W2018317900 cites W2127272780 @default.
- W2018317900 cites W2130479394 @default.
- W2018317900 cites W2131288855 @default.
- W2018317900 cites W2144081223 @default.
- W2018317900 cites W2149801992 @default.
- W2018317900 doi "https://doi.org/10.1074/jbc.m110.169045" @default.
- W2018317900 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3037647" @default.
- W2018317900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21147768" @default.
- W2018317900 hasPublicationYear "2011" @default.
- W2018317900 type Work @default.
- W2018317900 sameAs 2018317900 @default.
- W2018317900 citedByCount "24" @default.
- W2018317900 countsByYear W20183179002012 @default.
- W2018317900 countsByYear W20183179002013 @default.
- W2018317900 countsByYear W20183179002015 @default.
- W2018317900 countsByYear W20183179002016 @default.
- W2018317900 countsByYear W20183179002017 @default.
- W2018317900 countsByYear W20183179002018 @default.
- W2018317900 countsByYear W20183179002020 @default.
- W2018317900 countsByYear W20183179002023 @default.
- W2018317900 crossrefType "journal-article" @default.
- W2018317900 hasAuthorship W2018317900A5007314231 @default.
- W2018317900 hasAuthorship W2018317900A5024216292 @default.
- W2018317900 hasAuthorship W2018317900A5027457760 @default.
- W2018317900 hasAuthorship W2018317900A5044177677 @default.
- W2018317900 hasAuthorship W2018317900A5048580014 @default.
- W2018317900 hasAuthorship W2018317900A5049644732 @default.
- W2018317900 hasAuthorship W2018317900A5051229433 @default.
- W2018317900 hasAuthorship W2018317900A5072015473 @default.
- W2018317900 hasAuthorship W2018317900A5081113567 @default.
- W2018317900 hasAuthorship W2018317900A5081581635 @default.
- W2018317900 hasAuthorship W2018317900A5083216120 @default.
- W2018317900 hasAuthorship W2018317900A5086380237 @default.
- W2018317900 hasAuthorship W2018317900A5089022257 @default.
- W2018317900 hasBestOaLocation W20183179001 @default.
- W2018317900 hasConcept C116569031 @default.
- W2018317900 hasConcept C121332964 @default.
- W2018317900 hasConcept C12554922 @default.
- W2018317900 hasConcept C147597530 @default.
- W2018317900 hasConcept C148898269 @default.
- W2018317900 hasConcept C170493617 @default.
- W2018317900 hasConcept C178790620 @default.
- W2018317900 hasConcept C185592680 @default.
- W2018317900 hasConcept C548442186 @default.
- W2018317900 hasConcept C55493867 @default.
- W2018317900 hasConcept C59593255 @default.